Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Imaging ; 10(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786551

RESUMO

This paper presents a novel approach to mind-wandering prediction in the context of webcam-based online learning. We implemented a Singular Value Decomposition (SVD)-based 1D temporal eye-signal extraction method, which relies solely on eye landmark detection and eliminates the need for gaze tracking or specialized hardware, then extract suitable features from the signals to train the prediction model. Our thorough experimental framework facilitates the evaluation of our approach alongside baseline models, particularly in the analysis of temporal eye signals and the prediction of attentional states. Notably, our SVD-based signal captures both subtle and major eye movements, including changes in the eye boundary and pupil, surpassing the limited capabilities of eye aspect ratio (EAR)-based signals. Our proposed model exhibits a 2% improvement in the overall Area Under the Receiver Operating Characteristics curve (AUROC) metric and 7% in the F1-score metric for 'not-focus' prediction, compared to the combination of EAR-based and computationally intensive gaze-based models used in the baseline study These contributions have potential implications for enhancing the field of attentional state prediction in online learning, offering a practical and effective solution to benefit educational experiences.

2.
Beilstein J Nanotechnol ; 14: 781-792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441001

RESUMO

We present the in situ synthesis of silver nanoparticles (AgNPs) through ionotropic gelation utilizing the biodegradable saccharides lactose (Lac) and alginate (Alg). The lactose reduced silver ions to form AgNPs. The crystallite structure of the nanocomposite AgNPs@Lac/Alg, with a mean size of 4-6 nm, was confirmed by analytical techniques. The nanocomposite exhibited high catalytic performance in degrading the pollutants methyl orange and rhodamine B. The antibacterial activity of the nanocomposite is pH-dependent, related to the alterations in surface properties of the nanocomposite at different pH values. At pH 6, the nanocomposite demonstrated the highest antibacterial activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA