Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 352: 124129, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729505

RESUMO

Human-imported pollutants could induce water black, changing microbial community structure and function. Employed 16S rRNA high-throughput sequencing, field-scale investigations and laboratory-scale experiments were successively conducted to reveal mechanistic insights into microbial community assembly and succession of black-odor waters (BOWs). In the field-scale investigation, livestock breeding wastewater (56.7 ± 3.2%) was the most critical microbial source. Moreover, fermentation (27.1 ± 4.4%) was found to be the dominant function. Combined with laboratory experiments, the critical environmental factors, such as total organic carbon (30-100 mg/L), ammonia nitrogen (2.5-9 mg/L), initial dissolved oxygen (2-8 mg/L) and chlorophyll a (0-90 mg/L), impacted the intensity of blackening. The differentiation of ecological niches within the microbial community played a significant role in driving the blackening speed. In laboratory-scale experiments, the microbial ecological niche determined the blackening timing and dominations of the stochastic processes in the microbial assembly process (88 - 51%). The three stages, including the anaerobic degradation stage, blackening stage and slow recovery stage, were proposed to understand the assembly of the microbial communities. These findings enhance our understanding of microorganisms in BOWs and provide valuable insights for detecting and managing heavily organic polluted waters.


Assuntos
Microbiota , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/metabolismo , Poluentes Químicos da Água/análise , Microbiologia da Água
2.
Sci Total Environ ; 928: 172592, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38642768

RESUMO

Submerged plants affect nitrogen cycling in aquatic ecosystems. However, whether and how submerged plants change nitrous oxide (N2O) production mechanism and emissions flux remains controversial. Current research primarily focuses on the feedback from N2O release to variation of substrate level and microbial communities. It is deficient in connecting the relative contribution of individual N2O production processes (i.e., the N2O partition). Here, we attempted to offer a comprehensive understanding of the N2O mitigation mechanism in aquatic ecosystems on the Changjiang River Delta according to stable isotopic techniques, metagenome-assembly genome analysis, and statistical analysis. We found that the submerged plant reduced 45 % of N2O emissions by slowing down the dissolved inorganic nitrogen conversion velocity to N2O in sediment (Vf-[DIN]sed). It was attributed to changing the N2O partition and suppressing the potential capacity of net N2O production (i.e., nor/nosZ). The dominated production processes showed a shift with increasing excess N2O. Meanwhile, distinct shift thresholds of planted and unplanted habitats reflected different mechanisms of stimulated N2O production. The hotspot zone of N2O production corresponded to high nor/nosZ and unsaturated oxygen (O2) in unplanted habitat. In contrast, planted habitat hotspot has lower nor/nosZ and supersaturated O2. O2 from photosynthesis critically impacted the activities of N2O producers and consumers. In summary, the presence of submerged plants is beneficial to mitigate N2O emissions from aquatic ecosystems.


Assuntos
Ecossistema , Óxido Nitroso , Rios , China , Rios/química , Óxido Nitroso/análise , Plantas , Monitoramento Ambiental , Poluentes Atmosféricos/análise
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124206, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38560951

RESUMO

This research delves into the dynamic interplay between urbanization and the characteristics of Dissolved Organic Matter (DOM) in the Anyang River, particularly under the stress of torrential rain. The motivation stems from a critical need to decipher how urban landscapes influence water quality, focusing on the intricate transformations and movements of DOM. Employing advanced fluorescence spectroscopy techniques like Excitation-Emission Matrices (EEM) and Parallel Factor Analysis (PARAFAC), the study meticulously differentiates DOM compositions in urban and agricultural settings. It unveils a pronounced distinction, with urban streams showing elevated proteinaceous DOM from wastewater, contrasting with the humic substances prevalent in agricultural runoff. The analysis also captures how intense rainfall events catalyze significant shifts in DOM profiles, thereby emphasizing the need for tailored water quality management strategies in urbanized catchments. This comprehensive approach not only bridges gaps in understanding the urban impact on riverine ecosystems but also sets a foundation for future research and policy development in the face of escalating environmental changes.

4.
J Hazard Mater ; 467: 133673, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38340561

RESUMO

Black-odorous waters (BOWs) are heavily polluted waters where microbial information remains elusive mechanistically. Based on gene amplicon and metagenomics sequencing, a comprehensive study was conducted to investigate the microbial communities in urban and rural BOWs. The results revealed that microbial communities' assembly in urban and rural BOWs was predominantly governed by stochastic factors at the community level. At the taxonomic level, there were 62 core species (58.48%) in water and 207 core species (44.56%) in sediment across urban and rural areas. Notably, significant differences were observed in the functional genetic composition of BOWs between urban and rural areas. Specifically, rural areas exhibited an enhanced abundance of genes involved in nitrogen fixation, Fe2+ transport, and sulfate reduction. Conversely, urban areas showed higher abundances of some genes associated with carbon fixation, nitrification and denitrification. A sulfur-centered ecological model of microbial communities was constructed by integrating data from the three levels of analysis, and 14 near-complete draft genomes were generated, representing a substantial portion of the microbial community (35.04% in rural BOWs and 29.97% in urban BOWs). This research provides significant insights into the sustainable management and preservation of aquatic ecosystems affected by BOWs.


Assuntos
Microbiota , Microbiota/genética , Nitrificação , Microbiologia da Água , Poluição da Água , Água
5.
Environ Res ; 238(Pt 1): 117129, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709243

RESUMO

Anthropogenic landcover could rise nutrient concentrations and impact the characteristics and bioavailability of dissolved organic matter (DOM) in a river network. Exploring the interactions between DOM and microbials might be conducive to revealing biogeochemistry behaviors of organic matter. In this study, synchronous fluorescence spectra (SFS) with Gaussian band fitting and two-dimensional correlation spectroscopy (2D-COS) were employed to identify DOM fractions and reveal their interactions with bacterial communities. DOM was extracted from a river network under eco-agricultural rural (RUR), eco-residential urban (URB), eco-economical town (TOW), and eco-industrial park (IND) regions in Jiashan Plain of eastern China. The overlapping peaks observed in the SFS were successfully separated into four fractions using Gaussian band fitting, i.e., tyrosine-like fluorescence (TYLF), tryptophan-like fluorescence (TRLF), microbial humic-like fluorescence (MHLF), and fulvic-like fluorescence (FLF) materials. Across all four regions, TRLF (44.79% ± 7.74%) and TYLF (48.09% ± 8.85%) were the dominant components. Based on 2D-COS, variations of TYLF and TRLF were extremely larger than those of FLF in RUR-TOW. However, in URB-IND, the former exhibited lower variations compared to the latter. These suggested that FLF be likely derived continuously from lignin and other residue of terrestrial plant origin along the river network, and TYLF and TRLF be originated discontinuously from domestic wastewater in RUR-TOW. By high-throughput sequenced OTUs, the number of organisms in RUR-TOW could be higher than those in URB-IND, while genes associated with carbohydrate metabolism were lower in former than those in the latter. According to co-occurrence networks, microbes could promote the production of TYLF and TRLF in RUR-TOW. In contrast, microbial communities in URB-IND might contribute to decompose FLF. The obtained results could not only reveal interactions between DOM fractions and bacterial communities in the river network, but this methodology may be applied to other water bodies from different landscapes.


Assuntos
Matéria Orgânica Dissolvida , Rios , Rios/química , Águas Residuárias , Espectrometria de Fluorescência/métodos , Bactérias , Substâncias Húmicas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA