Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1433874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132501

RESUMO

Background: Increasing evidence reveals the involvement of mitochondria and macrophage polarisation in tumourigenesis and progression. This study aimed to establish mitochondria and macrophage polarisation-associated molecular signatures to predict prognosis in gastric cancer (GC) by single-cell and transcriptional data. Methods: Initially, candidate genes associated with mitochondria and macrophage polarisation were identified by differential expression analysis and weighted gene co-expression network analysis. Subsequently, candidate genes were incorporated in univariateCox analysis and LASSO to acquire prognostic genes in GC, and risk model was created. Furthermore, independent prognostic indicators were screened by combining risk score with clinical characteristics, and a nomogram was created to forecast survival in GC patients. Further, in single-cell data analysis, cell clusters and cell subpopulations were yielded, followed by the completion of pseudo-time analysis. Furthermore, a more comprehensive immunological analysis was executed to uncover the relationship between GC and immunological characteristics. Ultimately, expression level of prognostic genes was validated through public datasets and qRT-PCR. Results: A risk model including six prognostic genes (GPX3, GJA1, VCAN, RGS2, LOX, and CTHRC1) associated with mitochondria and macrophage polarisation was developed, which was efficient in forecasting the survival of GC patients. The GC patients were categorized into high-/low-risk subgroups in accordance with median risk score, with the high-risk subgroup having lower survival rates. Afterwards, a nomogram incorporating risk score and age was generated, and it had significant predictive value for predicting GC survival with higher predictive accuracy than risk model. Immunological analyses revealed showed higher levels of M2 macrophage infiltration in high-risk subgroup and the strongest positive correlation between risk score and M2 macrophages. Besides, further analyses demonstrated a better outcome for immunotherapy in low-risk patients. In single-cell and pseudo-time analyses, stromal cells were identified as key cells, and a relatively complete developmental trajectory existed for stromal C1 in three subclasses. Ultimately, expression analysis revealed that the expression trend of RGS2, GJA1, GPX3, and VCAN was consistent with the results of the TCGA-GC dataset. Conclusion: Our findings demonstrated that a novel prognostic model constructed in accordance with six prognostic genes might facilitate the improvement of personalised prognosis and treatment of GC patients.

2.
Medicina (Kaunas) ; 56(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065972

RESUMO

Systemic lupus erythematosus is a classical systemic autoimmune disease that overactivates complement and can affect all organs. Early diagnosis and effective management are important in this immune-complex-mediated chronic inflammatory disease, which has a strong component of vasculitis and carries an increased risk of thrombosis, even in the absence of antiphospholipid antibodies. Development of lupus nephritis can be life limiting but is managed with dialysis and renal transplantation. Therefore, data have become available that cardiovascular risk poses a serious feature of systemic lupus erythematosus that requires monitoring and prospective treatment. Cell-derived microparticles circulate in plasma and thereby intersect the humoral and cellular component of inflammation. They are involved in disease pathophysiology, particularly thrombosis, and represent a known cardiovascular risk. This viewpoint argues that a focus on characteristics of circulating microparticles measured in patients with systemic lupus erythematosus may help to classify certain ethnic groups who are especially at additional risk of experiencing cardiovascular complications.


Assuntos
Doenças Cardiovasculares , Micropartículas Derivadas de Células , Lúpus Eritematoso Sistêmico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Ativação do Complemento , Fatores de Risco de Doenças Cardíacas , Humanos , Lúpus Eritematoso Sistêmico/complicações , Estudos Prospectivos , Diálise Renal , Fatores de Risco
3.
Mol Cell Biol ; 38(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29661920

RESUMO

DHTKD1, a part of 2-ketoadipic acid dehydrogenase complex, is involved in lysine and tryptophan catabolism. Mutations in DHTKD1 block the metabolic pathway and cause 2-aminoadipic and 2-oxoadipic aciduria (AMOXAD), an autosomal recessive inborn metabolic disorder. In addition, a nonsense mutation in DHTKD1 that we identified previously causes Charcot-Marie-Tooth disease (CMT) type 2Q, one of the most common inherited neurological disorders affecting the peripheral nerves in the musculature. However, the comprehensive molecular mechanism underlying CMT2Q remains elusive. Here, we show that Dhtkd1-/- mice mimic the major aspects of CMT2 phenotypes, characterized by progressive weakness and atrophy in the distal parts of limbs with motor and sensory dysfunctions, which are accompanied with decreased nerve conduction velocity. Moreover, DHTKD1 deficiency causes severe metabolic abnormalities and dramatically increased levels of 2-ketoadipic acid (2-KAA) and 2-aminoadipic acid (2-AAA) in urine. Further studies revealed that both 2-KAA and 2-AAA could stimulate insulin biosynthesis and secretion. Subsequently, elevated insulin regulates myelin protein zero (Mpz) transcription in Schwann cells via upregulating the expression of early growth response 2 (Egr2), leading to myelin structure damage and axonal degeneration. Finally, 2-AAA-fed mice do reproduce phenotypes similar to CMT2Q phenotypes. In conclusion, we have demonstrated that loss of DHTKD1 causes CMT2Q-like phenotypes through dysregulation of Mpz mRNA and protein zero (P0) which are closely associated with elevated DHTKD1 substrate and insulin levels. These findings further indicate an important role of metabolic disorders in addition to mitochondrial insufficiency in the pathogenesis of peripheral neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Cetona Oxirredutases/deficiência , Cetona Oxirredutases/genética , Ácido 2-Aminoadípico/metabolismo , Adipatos/metabolismo , Animais , Doença de Charcot-Marie-Tooth/fisiopatologia , Códon sem Sentido , Modelos Animais de Doenças , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Humanos , Insulina/metabolismo , Complexo Cetoglutarato Desidrogenase , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína P0 da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Condução Nervosa , Fenótipo , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA