Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19828-19837, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567790

RESUMO

Passive radiative cooling (PRC) is a zero-energy-consumption technology that reflects sunlight and radiates heat to cold outer space. In this work, a porous poly(vinylidene fluoride)-poly(methyl methacrylate) (PVDF-PMMA) composite film is fabricated by decorating zinc-imidazolate metal-organic framework (MOF) (ZIF-8) particles obtained by phase inversion. Due to the competent scattering via the coral-like hierarchical structures and the vibration excitations of specific functional groups, the prepared film exhibits good solar reflectance (92.6%) and intermediate infrared emittance (99.1%), with an average sub-ambient cooling of 10.4 °C under a solar radiation intensity of 0.6 AM1.5. Additionally, poly(vinylidene fluoride) has a low surface energy, while the ZIF-8 particles and coral-like hierarchical structures enhance the surface roughness, endowing the surface with significant superhydrophobicity characterized by a water contact angle (WCA) of 157.5° and a sliding angle (SA) of 2°. These films exhibit excellent antibacterial properties. When the content of ZIF-8 particles in the film is 300 mg·L-1, the antibacterial rate reaches 100% after 1 h of treatment. Thus, the ZIF-8 porous poly(vinylidene fluoride)-poly(methyl methacrylate) composite (ZPPP) film has potential application prospects in areas with high health and environmental requirements, such as cold chain transportation and public spaces.

2.
Opt Express ; 31(14): 22296-22307, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475344

RESUMO

Passive daytime radiative cooling (PDRC) as a zero-energy consumption cooling method has broad application potential. Common commercial crystalline silicon (c-Si) solar cell arrays suffer working efficiency loss due to the incident light loss and overheating. In this work, a radiative cooler with PDMS (polydimethylsiloxane) film and embedded SiO2 microparticles was proposed to use in silicon solar cells. Both anti-reflection and radiative cooling performance can be improved through numerical parametric study. For the best performing of PDMS/SiO2 radiative cooler, the thickness of PDMS layer, volume fraction and radius of the embedded SiO2 particles have been determined as 55 µm, 8% and 500 nm, respectively. 94% of emissivity in first atmospheric window band (8-13 µm) for radiative cooling and 93.4% of solar transmittance at the crystalline silicon absorption band (0.3-1.1 µm) were achieved. We estimated that the PDMS/SiO2 radiative cooler can lower the temperature of a bare c-Si solar cell by 9.5°C, which can avoid 4.28% of efficiency loss. More incident light can enter and be utilized by silicon layer to enhance the efficiency of the solar cells. The proposed difunctional radiative cooling coating may become guidance for next generation encapsulation of crystalline silicon solar cells.

3.
ACS Appl Mater Interfaces ; 14(27): 31277-31284, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771521

RESUMO

Passive radiative cooling is a spontaneous pattern of reflecting sunlight and radiating heat into the cold outer space through transparent atmosphere windows. In this work, an ordered-porous-array polymethyl methacrylate (OPA-PMMA) film with the properties of excellent radiative cooling is designed and studied. An ultra-high emissivity of 98.4% in the mid-infrared region (3-25 µm) and a good solar reflectance of 85% in the ultraviolet and near-infrared solar spectra (0.2-2.5 µm) were achieved. The surface temperature of the OPA-PMMA film is 16 °C lower than that of the smooth-surface PMMA films and is 8.6 °C lower than that of the commercial white paint in the outdoor test. The structure of the OPA plays an important role in improving solar reflectivity and emissivity. The films are fabricated using a one-step low-cost process that can be applied for large-scale production. It is vital for promoting radiative cooling as a viable energy technology for buildings, fabric, or equipment that need a cooling environment.

4.
Opt Express ; 25(13): 14725-14731, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789056

RESUMO

Ultrathin crystalline silicon solar cells are a promising technology roadmap to achieve more cost effectiveness. However, experimental reports on ultrathin crystalline silicon cells with thickness less than 20 µm are rare. Here, we experimentally fabricate and investigate ultrathin monocrystalline silicon solar cells consisting of 16 µm-silicon base thickness and low-cost front random pyramidal texture with the feature size of 1-2 µm. The normalized light absorption is calculated to explain the measured external quantum efficiency. The achieved efficiency is 15.1% for the single-layer passivated textured solar cell. In addition, via double-layer passivation of Al2O3/SiNx, the efficiency is further increased to 16.4% for the best textured cell, which significantly improves the absolute efficiency with Δη = 1.3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA