Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Res ; 41(11): 2405-2417, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37186383

RESUMO

Effects of Orientin on murine chondrocytes treated with interleukin-1ß (IL-1ß) were evaluated using qPCR, western blot analysis, ELISA, and immunofluorescent staining in vitro. In vivo, We established a standard OA model by performing the destabilized medial meniscus (DMM) surgery on C57BL/6 mice, and assessed healing effect of Orientin by X-ray imaging, histopathological analysis, immunohistochemical staining. Osteoarthritis (OA) is the most common form of degenerative joint disease in clinic and the chondrocyte inflammation plays the most important role in OA development. The natural flavonoid compound (Orientin) has anti-inflammatory bioactive properties in the treatment of various diseases. But studies have not explored whether Orientin modulates OA progression. In this study, a significant suppression in IL-1ß-mediated pro-inflammatory mediators and the degradation of cartilage extracellular matrix (ECM) was observed in vitro through qPCR, western blot analysis, ELISA, and immunofluorescent staining after the treatment with Orientin. In addition, Orientin abrogated DMM surgery induced cartilage degradation in mice, which was assessed by X-ray imaging, histopathological analysis, immunohistochemical staining. Mechanistic studies showed that Orientin suppressed OA development by downregulating activation of NF-κB by activating Nrf2/HO-1 axis and SIRT6 signaling pathway. These results provide evidence that Orientin serves as a potentially viable compound for the treatment of OA.


Assuntos
Osteoartrite , Sirtuínas , Camundongos , Animais , Condrócitos/metabolismo , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Osteoartrite/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Meniscos Tibiais/patologia , Sirtuínas/metabolismo , Sirtuínas/farmacologia , Interleucina-1beta/metabolismo , Células Cultivadas
2.
Bioact Mater ; 22: 274-290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36263097

RESUMO

Spinal cord injury (SCI) is a serious clinical disease. Due to the deformability and fragility of the spinal cord, overly rigid hydrogels cannot be used to treat SCI. Hence, we used TPA and Laponite to develop a hydrogel with shear-thinning ability. This hydrogel exhibits good deformation, allowing it to match the physical properties of the spinal cord; additionally, this hydrogel scavenges ROS well, allowing it to inhibit the lipid peroxidation caused by ferroptosis. According to the in vivo studies, the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism. In addition, dental pulp stem cells (DPSCs) were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses. It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.

4.
Front Pharmacol ; 13: 860757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873542

RESUMO

Disturbance of the internal environment in the spinal cord after spinal cord injury (SCI) is an important cause of the massive death of neurons in the injury area and one of the major problems that lead to the difficult recovery of motor function in patients. Rehmannia glutinosa, a famous traditional Chinese medicine, is commonly used in neurodegenerative diseases, whereas an iridoid glycoside extract of catalpol (CAT), with antioxidant, antiapoptotic, and neuroprotective pharmacological effects. However, the neuroprotective and anti-apoptosis mechanism of CAT in SCI remains unclear. In our study, we found that CAT has a restorative effect on the lower limb motor function of rats with SCI by establishing a rat model of SCI and treating CAT gavage for 30 days. Our study further found that CAT has the effect of inhibiting apoptosis and protecting neurons, and the action pathway may reduce endoplasmic reticulum (ER) stress by inhibiting CHOP and GRP78 expression and then reduce apoptosis and protect neurons through the Caspase3/Bax/Bcl-2 pathway. In conclusion, we demonstrated that CAT can treat SCI by inhibiting ER stress-mediated neuronal apoptosis and has the potential to be a clinical drug for the treatment of SCI.

5.
Front Bioeng Biotechnol ; 9: 771066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869285

RESUMO

Random flaps are widely used in tissue reconstruction, attributed to the lack of vascular axial limitation. Nevertheless, the distal end of the flap is prone to necrosis due to the lack of blood supply. Notoginseng triterpenes (NTs) are the active components extracted from Panax notoginseng, reducing oxygen consumption and improving the body's tolerance to hypoxia. However, their role in random flap survival has not been elucidated. In this study, we used a mouse random skin flap model to verify that NT can promote cell proliferation and migration and that increasing blood perfusion can effectively improve the survival area of a skin flap. Our study also showed that the autophagy of random flaps after NT treatment was activated through the Beclin-1/VPS34/LC3 signaling pathway, and the therapeutic effect of NT significantly decreased after VPS34 IN inhibited autophagy. In conclusion, we have demonstrated that NT can significantly improve the survival rate of random flaps through the Beclin-1/VPS34/LC3 signaling pathway, suggesting that it might be a promising clinical treatment option.

6.
Cell Death Discov ; 7(1): 301, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675188

RESUMO

The ischemia and hypoxia microenvironment after spinal cord injury (SCI) makes SCI repair a challenging problem. With various stimulus, chances for neural stem cells (NSCs) to differentiate into neurons, astrocytes, oligodendrocytes are great and is considered as a potential source of the stem cell therapy to SCI. Our research used adeno-associated virus (AAV) to carry the target gene to transfect neural stem cells. Transfected NSCs can express nerve growth factor (NGF) navigated by five hypoxia-responsive elements (5HRE). Therefore, the 5HRE-NGF-NSCs could express NGF specifically in hypoxia sites to promote the tissue repair and function recovery. Based on the regeneration of neurocytes and promotion of the recovery found in SCI models, via locomotor assessment, histochemical staining and molecular examinations, our results demonstrated that 5HRE-NGF-NSCs could improve the motor function, neurons survival and molecules expression of SCI rats. Meanwhile, the downregulated expression of autophagy-related proteins indicated the inhibitive effect of 5HRE-NGF-NSCs on autophagy. Our research showed that 5HRE-NGF-NSCs contribute to SCI repair which might via inhibiting autophagy and improving the survival rate of neuronal cells. The new therapy also hampered the hyperplasia of neural glial scars and induced axon regeneration. These positive functions of 5HRE-NGF-NSCs all indicate a promising SCI treatment.

7.
Front Cell Dev Biol ; 9: 693694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195203

RESUMO

Reducing neuronal death after spinal cord injury (SCI) is considered to be an important strategy for the renovation of SCI. Studies have shown that, as an important regulator of the development and maintenance of neural structure, acidic fibroblast growth factor (aFGF) has the role of tissue protection and is considered to be an effective drug for the treatment of SCI. Neural stem cells (NSCs) are rendered with the remarkable characteristics to self-replace and differentiate into a variety of cells, so it is promising to be used in cell transplantation therapy. Based on the facts above, our main aim of this research is to explore the role of NSCs expressing aFGF meditated by five hypoxia-responsive elements (5HRE) in the treatment of SCI by constructing AAV-5HRE-aFGF-NSCs and transplanting it into the area of SCI. Our research results showed that AAV-5HRE-aFGF-NSCs can effectively restore the motor function of rats with SCI. This was accomplished by inhibiting the expression of caspase 12/caspase 3 pathway, EIF2α-CHOP pathway, and GRP78 protein to inhibit apoptosis.

8.
Bioact Mater ; 6(8): 2452-2466, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33553827

RESUMO

Cell-based transplantation strategies possess great potential for spinal cord injury (SCI) repair. Basic fibroblast growth factor (bFGF) has been reported to have multiple neuro-promoting effects on developing and adult nervous system of mammals and considered a promising therapy for nerve injury following SCI. Human dental pulp stem cells (DPSCs) are abundant stem cells with low immune rejection, which can be considered for cell replacement therapy. The purpose of this study was to investigate the roles of DPSCs which express bFGF under the regulation of five hypoxia-responsive elements (5HRE) using an adeno-associated virus (AAV-5HRE-bFGF-DPSCs) in SCI repairing model. In this study, DPSCs were revealed to differentiate into CD13+ pericytes and up-regulate N-cadherin expression to promote the re-attachment of CD13+ pericytes to vascular endothelial cells. The re-attachment of CD13+ pericytes to vascular endothelial cells subsequently increased the flow rate of blood in microvessels via the contraction of protuberance. As a result, increased numbers of red blood cells carried more oxygen to the damaged area and the local hypoxia microenvironment in SCI was improved. Thus, this study represents a step forward towards the potential use of AAV-5HRE-bFGF-DPSCs in SCI treatment in clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA