Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 10(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554250

RESUMO

As a new energy technology, the fuel cell has developed rapidly, and its performance has been continuously improved. Fuel cell stacks composed of multiple single cells are gradually being used in portable electronic products. Since the performance of fuel cells cannot be optimal at room temperature, it is critical to research cell temperature characteristics and heat distributions in applications. In this paper, the effects of temperature and charge transfer coefficient and the relationship between exchange current density and output voltage were analyzed by the mathematical model of direct methanol fuel cells. Moreover, to optimize the thermal layout of the fuel cell stack in the printed circuit board (PCB) substrate, the idea of a fuel cell as a device was proposed innovatively, and the corresponding thermal optimization strategy was analyzed. A novel particle swarm optimization algorithm was used to detect the optimal layout of fuel cells of different specifications on the same substrate. The three-dimensional thermal simulation model was used to obtain the temperature data and verify the optimization results.

2.
Micromachines (Basel) ; 10(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146378

RESUMO

To achieve a self-adaptive fuel supply mechanism for the micro direct methanol fuel cell (µDMFC), we designed and developed a thermal control microvalve channel structure, where we considered the relationship between the temperature characteristics, viscosity, and velocity of the methanol solution. Both the single channel model and three-dimensional cell model for the microvalve were established using the COMSOL Multiphysics program. The results demonstrated that in the microvalve channel, the viscosity of the solution decreased, and the flow rate at the microvalve outlet increased with the increasing temperature. Meanwhile, the geometry structure of the microvalve single channel was optimized, so that the effect of the control speed of the microvalve under temperature changes became more prominent. In the full-cell model analysis, a low-velocity methanol solution at the low current density can significantly inhibit methanol crossover. At the high current densities, an increase in the methanol solution flow rate was beneficial to an increase in the cell reaction output. The µDMFC was fabricated and the experiment was conducted, where the results showed that the power density of the self-adaptive cell reached a maximum value of 16.56 mW/cm2 in 2 M methanol solution, which was up to 7% better than conventional cell performance. The proposed microvalve structure can effectively improve the output power of the µDMFC during the whole reaction process, and it may improve the stability of the cell operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA