RESUMO
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world's growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology advancements because of their abundance, biocompatibility, biodegradability, renewability, and superior mechanical properties. Spherical cellulose nanocrystals (J-CNCs) were successfully synthesized from Jenfokie micro-cellulose (J-MC) via sulfuric acid hydrolysis in this study. The yield (up to 58.6%) and specific surface area (up to 99.64 m2/g) of J-CNCs were measured. A field emission gun-scanning electron microscope (FEG-SEM) was used to assess the morphology of the J-MC and J-CNC samples. The spherical shape nanoparticles with a mean nano-size of 34 nm for J-CNCs were characterized using a transmission electron microscope (TEM). X-ray diffraction (XRD) was used to determine the crystallinity index and crystallinity size of J-CNCs, up to 98.4% and 6.13 nm, respectively. The chemical composition was determined using a Fourier transform infrared (FT-IR) spectroscope. Thermal characterization of thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) was conducted to identify the thermal stability and cellulose pyrolysis behavior of both J-MC and J-CNC samples. The thermal analysis of J-CNC indicated lower thermal stability than J-MC. It was noted that J-CNC showed higher levels of crystallinity and larger crystallite sizes than J-MC, indicating a successful digestion and an improvement of the main crystalline structure of cellulose. The X-ray diffraction spectra and TEM images were utilized to establish that the nanocrystals' size was suitable. The novelty of this work is the synthesis of spherical nanocellulose with better properties, chosen with a rich source of cellulose from an affordable new plant (studied for the first time) by stepwise water-retted extraction, continuing from our previous study.
RESUMO
Conversion of CO2 into value-added products by electrocatalysis provides a promising way to mitigate energy and environmental problems. However, it is greatly limited by the scaling relationship between the adsorption strength of intermediates. Herein, Mn and Ni single-atom catalysts, homonuclear dual-atom catalysts (DACs), and heteronuclear DACs are synthesized. Aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray absorption spectroscopy characterization uncovered the existence of the MnâNi pair in MnâNi DAC. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy reveal that Mn donated electrons to Ni atoms in MnâNi DAC. Consequently, MnâNi DAC displays the highest CO Faradaic efficiency of 98.7% at -0.7 V versus reversible hydrogen electrode (vs RHE) with CO partial current density of 16.8 mA cm-2. Density functional theory calculations disclose that the scaling relationship between the binding strength of intermediates is broken, resulting in superior performance for ECR to CO over MnâNiâNC catalyst.
RESUMO
Microstructure and texture evolution of directed-laser deposited super-duplex stainless-steel, in the as-received block, were characterized using light and electron microscopies and electron backscattered diffraction. Mechanical properties in different directions were studied. Local FCC-depleted and FCC-rich zones and extensive precipitation of oxides were detected at the matrix wherein the different types of reformed austenite were surrounded by the elongated coarse ferrite. A vertical gradient of austenite content, caused by overall change in cooling rate, generated a waning hardness distribution along the building direction. The texture of austenite across the different deposition layers was not as intense as that of the ferrite. A dominant ⟨ 001 ⟩ ⫽ND fibre, embedding strong Cube { 001 } ⟨ 100 ⟩ , was calculated for ferrite on the layer away from the bottom while the Goss { 011 } ⟨ 100 ⟩ appeared in the layer near the building substrate due to the considerable epitaxially developed grains. The less intensified multi-component texture of austenite at the layer near the substrate changed to ⟨ 011 ⟩ ⫽ND fibre adorned by Rotated-Goss and Goss components at the upper layers where an incomplete fibre { 001 } ⟨ u v w ⟩ with a major Rotated-Cube was also partially inherited from the parent phase. The inter-phase boundaries obeying Kurdjumov-Sachs orientation relationship were predominantly formed at all layers. A slight increase of Σ3 coincidence site lattice interfaces was observed in austenite across the build direction. The possible mechanical anisotropy was depressed due to complex and multi-component transformation texture of the austenite. The material showed brittleness corresponding to significantly high tensile strength and low impact toughness.