Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Appl Environ Microbiol ; 90(3): e0162923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38335112

RESUMO

We used quantitative microbial risk assessment to estimate ingestion risk for intI1, erm(B), sul1, tet(A), tet(W), and tet(X) in private wells contaminated by human and/or livestock feces. Genes were quantified with five human-specific and six bovine-specific microbial source-tracking (MST) markers in 138 well-water samples from a rural Wisconsin county. Daily ingestion risk (probability of swallowing ≥1 gene) was based on daily water consumption and a Poisson exposure model. Calculations were stratified by MST source and soil depth over the aquifer where wells were drilled. Relative ingestion risk was estimated using wells with no MST detections and >6.1 m soil depth as a referent category. Daily ingestion risk varied from 0 to 8.8 × 10-1 by gene and fecal source (i.e., human or bovine). The estimated number of residents ingesting target genes from private wells varied from 910 (tet(A)) to 1,500 (intI1 and tet(X)) per day out of 12,000 total. Relative risk of tet(A) ingestion was significantly higher in wells with MST markers detected, including wells with ≤6.1 m soil depth contaminated by bovine markers (2.2 [90% CI: 1.1-4.7]), wells with >6.1 m soil depth contaminated by bovine markers (1.8 [1.002-3.9]), and wells with ≤6.1 m soil depth contaminated by bovine and human markers simultaneously (3.1 [1.7-6.5]). Antibiotic resistance genes (ARGs) were not necessarily present in viable microorganisms, and ingestion is not directly associated with infection. However, results illustrate relative contributions of human and livestock fecal sources to ARG exposure and highlight rural groundwater as a significant point of exposure.IMPORTANCEAntibiotic resistance is a global public health challenge with well-known environmental dimensions, but quantitative analyses of the roles played by various natural environments in transmission of antibiotic resistance are lacking, particularly for drinking water. This study assesses risk of ingestion for several antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in drinking water from private wells in a rural area of northeast Wisconsin, United States. Results allow comparison of drinking water as an exposure route for antibiotic resistance relative to other routes like food and recreational water. They also enable a comparison of the importance of human versus livestock fecal sources in the study area. Our study demonstrates the previously unrecognized importance of untreated rural drinking water as an exposure route for antibiotic resistance and identifies bovine fecal material as an important exposure factor in the study setting.


Assuntos
Antibacterianos , Água Potável , Animais , Humanos , Bovinos , Antibacterianos/farmacologia , Genes Bacterianos , Gado , Fezes , Solo , Medição de Risco , Resistência Microbiana a Medicamentos/genética , Ingestão de Alimentos
3.
S Afr J Sports Med ; 35(1): v35i1a16376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249755

RESUMO

Managing training load in rugby union is crucial for optimising performance and injury prevention. Contact training warrants attention because of higher overall injury and head impact risk, yet players must develop physical, technical, and mental skills to withstand the demands of the game. To help coaches manage contact loads in professional rugby, World Rugby and International Rugby Players convened an expert working group. They conducted a global survey with players to develop contact load guidelines. This commentary aims to describe the contact load guidelines and their implementation, and identify areas where future work is needed to support their evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA