Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(7): 2761-2773, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38502102

RESUMO

We introduce an approach to improve single-reference coupled cluster theory in settings where the Aufbau determinant is absent from or plays only a small role in the true wave function. Using a de-excitation operator that can be efficiently hidden within a similarity transform, we create a coupled cluster wave function in which de-excitations work to suppress the Aufbau determinant and produce wave functions dominated by other determinants. Thanks to an invertible and fully exponential form, the approach is systematically improvable, size consistent, size extensive, and, interestingly, size intensive in a granular way that should make the adoption of some ground state techniques, such as local correlation, relatively straightforward. In this initial study, we apply the general formalism to create a state-specific method for orbital-relaxed, singly excited states. We find that this approach matches the accuracy of similar-cost equation-of-motion methods in valence excitations while offering improved accuracy for charge transfer states. We also find the approach to be more accurate than excited-state-specific perturbation theory in both types of states.

2.
J Chem Theory Comput ; 19(18): 6160-6171, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676752

RESUMO

We present an excited-state-specific coupled-cluster approach in which both the molecular orbitals and cluster amplitudes are optimized for an individual excited state. The theory is formulated via a pseudoprojection of the traditional coupled-cluster wavefunction that allows correlation effects to be introduced atop an excited-state mean field starting point. The approach shares much in common with ground-state CCSD, including size extensivity and an N6 cost scaling. Preliminary numerical tests show that, when augmented with N5 cost perturbative corrections for key terms, the method can improve over excited-state-specific second-order perturbation theory in valence, charge transfer, and Rydberg states.

3.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37293960

RESUMO

We explore the performance of a recently introduced N5-scaling excited-state-specific second order perturbation theory (ESMP2) on the singlet excitations of the Thiel benchmarking set. We find that, without regularization, ESMP2 is quite sensitive to π system size, performing well in molecules with small π systems but poorly in those with larger π systems. With regularization, ESMP2 is far less sensitive to π system size and shows a higher overall accuracy on the Thiel set than CC2, equation of motion-coupled cluster with singles and doubles, CC3, and a wide variety of time-dependent density functional approaches. Unsurprisingly, even regularized ESMP2 is less accurate than multi-reference perturbation theory on this test set, which can, in part, be explained by the set's inclusion of some doubly excited states but none of the strong charge transfer states that often pose challenges for state-averaging. Beyond energetics, we find that the ESMP2 doubles norm offers a relatively low-cost way to test for doubly excited character without the need to define an active space.


Assuntos
Citoesqueleto , Movimento (Física)
4.
Front Neurosci ; 15: 739730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690678

RESUMO

Air turbulence ensures that in a natural environment insects tend to encounter odor stimuli in a pulsatile fashion. The frequency and duration of odor pulses varies with distance from the source, and hence successful mid-flight odor tracking requires resolution of spatiotemporal pulse dynamics. This requires both olfactory and mechanosensory input (from wind speed), a form of sensory integration observed within the antennal lobe (AL). In this work, we employ a model of the moth AL to study the effect of mechanosensory input on AL responses to pulsatile stimuli; in particular, we examine the ability of model neurons to: (1) encode the temporal length of a stimulus pulse; (2) resolve the temporal dynamics of a high frequency train of brief stimulus pulses. We find that AL glomeruli receiving olfactory input are adept at encoding the temporal length of a stimulus pulse but less effective at tracking the temporal dynamics of a pulse train, while glomeruli receiving mechanosensory input but little olfactory input can efficiently track the temporal dynamics of high frequency pulse delivery but poorly encode the duration of an individual pulse. Furthermore, we show that stronger intrinsic small-conductance calcium-dependent potassium (SK) currents tend to skew cells toward being better trackers of pulse frequency, while weaker SK currents tend to entail better encoding of the temporal length of individual pulses. We speculate a possible functional division of labor within the AL, wherein, for a particular odor, glomeruli receiving strong olfactory input exhibit prolonged spiking responses that facilitate detailed discrimination of odor features, while glomeruli receiving mechanosensory input (but little olfactory input) serve to resolve the temporal dynamics of brief, pulsatile odor encounters. Finally, we discuss how this hypothesis extends to explaining the functional significance of intraglomerular variability in observed phase II response patterns of AL neurons.

5.
J Theor Biol ; 509: 110510, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33022286

RESUMO

Odors emanating from a biologically relevant source are rapidly embedded within a windy, turbuluent medium that folds and spins filaments into fragmented strands of varying sizes. Environmental odor plumes therefore exhibit complex spatiotemporal dynamics, and rarely yield an easily discernible concentration gradient marking an unambiguous trail to an odor source. Thus, sensory integration of chemical input, encoding odor identity or concentration, and mechanosensory input, encoding wind speed, is a critical task that animals face in resolving the complex dynamics of odor plumes and tracking an odor source. In insects, who employ olfactory navigation as their primary means of foraging for food and finding mates, the antennal lobe (AL) is the first brain structure that processes sensory odor information. Although the importance of chemosensory and mechanosensory integration is widely recognized, the AL itself has traditionally been viewed purely from the perspective of odor encoding, with little attention given to its role as a bimodal integrator. In this work, we seek to explore the AL as a model for studying sensory integration - it boasts well-understood architecture, well-studied olfactory responses, and easily measurable cells. Using a moth model, we present experimental data that clearly demonstrates that AL neurons respond, in dynamically distinct ways, to both chemosensory and mechanosensory input; mechanosensory responses are transient and temporally precise, while olfactory responses are long-lasting but lack temporal precision. We further develop a computational model of the AL, show that our model captures odor response dynamics reported in the literature, and examine the dynamics of our model with the inclusion of mechanosensory input; we then use our model to pinpoint dynamical mechanisms underlying the bimodal AL responses revealed in our experimental work. Finally, we propose a novel hypothesis about the role of mechanosensory input in sculpting AL dynamics and the implications for biological odor tracking.


Assuntos
Mariposas , Animais , Encéfalo , Neurônios , Odorantes , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA