Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 40(7): 111208, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977478

RESUMO

Sphingosine-1-phosphate (S1P) is a potent lipid mediator that is secreted by several cell types. We recently showed that Mfsd2b is an S1P transporter from hematopoietic cells that contributes approximately 50% plasma S1P. Here we report the characterization of compound deletion of Mfsd2b and Spns2, another S1P transporter active primarily in endothelial cells. Global deletion of Mfsd2b and Spns2 (global double knockout [gDKO]) results in embryonic lethality beyond embryonic day 14.5 (E14.5), with severe hemorrhage accompanied by defects of tight junction proteins, indicating that Mfsd2b and Spns2 provide S1P for signaling, which is essential for blood vessel integrity. Compound postnatal deletion of Mfsd2b and Spns2 using Mx1Cre (ctDKO-Mx1Cre) results in maximal 80% reduction of plasma S1P. ctDKO-Mx1Cre mice exhibit severe susceptibility to anaphylaxis, indicating that S1P from Mfsd2b and Spns2 is indispensable for vascular homeostasis. Our results show that S1P export from Mfsd2b and Spns2 is essential for developing and mature vasculature.


Assuntos
Anafilaxia , Proteínas de Membrana/metabolismo , Anafilaxia/metabolismo , Animais , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Células Endoteliais/metabolismo , Homeostase , Lisofosfolipídeos/metabolismo , Camundongos , Esfingosina/metabolismo
2.
Pathogens ; 10(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358039

RESUMO

Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.

3.
J Biol Chem ; 296: 100201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334894

RESUMO

Sphingosine-1-phosphate (S1P) is a potent lipid mediator that exerts its activity via activation of five different G protein-coupled receptors, designated as S1P1-5. This potent lipid mediator is synthesized from the sphingosine precursor by two sphingosine kinases (SphK1 and 2) and must be exported to exert extracellular signaling functions. We recently identified Mfsd2b as the S1P transporter in the hematopoietic system. However, the sources of sphingosine for S1P synthesis and the transport mechanism of Mfsd2b in erythrocytes remain to be determined. Here, we show that erythrocytes efficiently take up exogenous sphingosine and that a de novo synthesis pathway in part provides sphingosines to erythrocytes. The uptake of sphingosine in erythrocytes is facilitated by the activity of SphK1. By converting sphingosine into S1P, SphK1 indirectly increases the influx of sphingosine, a process that is irreversible in erythrocytes. Our results explain for the abnormally high amount of sphingosine accumulation in Mfsd2b knockout erythrocytes. Furthermore, we show that Mfsd2b utilizes a proton gradient to facilitate the release of S1P. The negatively charged residues D95 and T157 are essential for Mfsd2b transport activity. Of interest, we also discovered an S1P analog that inhibits S1P export from erythrocytes, providing evidence that sphingosine analogs can be used to inhibit S1P export by Mfsd2b. Collectively, our results highlight that erythrocytes are efficient in sphingosine uptake for S1P production and the release of S1P is dependent on Mfsd2b functions.


Assuntos
Eritrócitos/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Animais , Transporte Biológico , Vias Biossintéticas , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares
4.
Cell Rep ; 31(4): 107584, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348755

RESUMO

Human antibody SIgN-3C neutralizes dengue virus (DENV) and Zika virus (ZIKV) differently. DENV:SIgN-3C Fab and ZIKV:SIgN-3C Fab cryoelectron microscopy (cryo-EM) complex structures show Fabs crosslink E protein dimers at extracellular pH 8.0 condition and also when further incubated at acidic endosomal conditions (pH 8.0-6.5). We observe Fab binding to DENV (pH 8.0-5.0) prevents virus fusion, and the number of bound Fabs increase (from 120 to 180). For ZIKV, although there are already 180 copies of Fab at pH 8.0, virus structural changes at pH 5.0 are not inhibited. The immunoglobulin G (IgG):DENV structure at pH 8.0 shows both Fab arms bind to epitopes around the 2-fold vertex. On ZIKV, an additional Fab around the 5-fold vertex at pH 8.0 suggests one IgG arm would engage with an epitope, although the other may bind to other viruses, causing aggregation. For DENV2 at pH 5.0, a similar scenario would occur, suggesting DENV2:IgG complex would aggregate in the endosome. Hence, a single antibody employs different neutralization mechanisms against different flaviviruses.


Assuntos
Flavivirus/patogenicidade , Testes de Neutralização/métodos , Humanos
5.
Br J Pharmacol ; 175(19): 3741-3746, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30047983

RESUMO

Sphingosine-1-phosphate (S1P) is an essential, bioactive lysophospholipid mediator that regulates various physiological functions such as lymphocyte trafficking, inflammation and behavioural characteristics of the vascular system. S1P signalling is mediated via a family of five GPCRs, which are expressed in various cell types and tissues. S1P concentration is maintained in a gradient through the activity of S1P degrading enzymes, and this gradient is critical for lymphocyte egress. To exert its extracellular signalling roles, S1P must be secreted out of the cells by protein transporters. The recent discovery of S1P transporters has shed light on the sources of S1P. However, these transporters still need to be clarified as they are important in defining the S1P gradient for lymphocyte recirculation and the source of S1P for maintenance of blood vessels. Here, we review the current understanding of S1P sources, highlighting the roles of S1P transporters with an emphasis on haematopoietic cells as a major source of circulatory S1P.


Assuntos
Plaquetas/metabolismo , Eritrócitos/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Animais , Humanos , Esfingosina/metabolismo
7.
NPJ Vaccines ; 2: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263863

RESUMO

A therapy for dengue is still elusive. We describe the neutralizing and protective capacity of a dengue serotype-cross-reactive antibody isolated from the plasmablasts of a patient. Antibody SIgN-3C neutralized all four dengue virus serotypes at nano to picomolar concentrations and significantly decreased viremia of all serotypes in adult mice when given 2 days after infection. Moreover, mice were protected from pathology and death from a lethal dengue virus-2 infection. To avoid potential Fc-mediated uptake of immune complexes and ensuing enhanced infection, we introduced a LALA mutation in the Fc part. SIgN-3C-LALA was as efficient as the non-modified antibody in neutralizing dengue virus and in protecting mice while antibody-dependent enhancement was completely abrogated. The epitope of the antibody includes conserved amino acids in all three domains of the glycoprotein, which can explain its cross-reactivity. SIgN-3C-LALA neutralizes dengue virus both pre and post-attachment to host cells. These attributes likely contribute to the remarkable protective capacity of SIgN-3C.

8.
J Virol ; 90(24): 11122-11131, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707930

RESUMO

Half of the world's population is exposed to the risk of dengue virus infection. Although a vaccine for dengue virus is now available in a few countries, its reported overall efficacy of about 60% is not ideal. Protective immune correlates following natural dengue virus infection remain undefined, which makes it difficult to predict the efficacy of new vaccines. In this study, we address the protective capacity of dengue virus-specific antibodies that are produced by plasmablasts a few days after natural secondary infection. Among a panel of 18 dengue virus-reactive human monoclonal antibodies, four groups of antibodies were identified based on their binding properties. While antibodies targeting the fusion loop of the glycoprotein of dengue virus dominated the antibody response, two smaller groups of antibodies bound to previously undescribed epitopes in domain II of the E protein. The latter, largely serotype-cross-reactive antibodies, demonstrated increased stability of binding at pH 5. These antibodies possessed weak to moderate neutralization capacity in vitro but were the most efficacious in promoting the survival of infected mice. Our data suggest that the cross-reactive anamnestic antibody response has a protective capacity despite moderate neutralization in vitro and a moderate decrease of viremia in vivo IMPORTANCE: Antibodies can protect from symptomatic dengue virus infection. However, it is not easy to assess which classes of antibodies provide protection because in vitro assays are not always predictive of in vivo protection. During a repeat infection, dengue virus-specific immune memory cells are reactivated and large amounts of antibodies are produced. By studying antibodies cloned from patients with heterologous secondary infection, we tested the protective value of the serotype-cross-reactive "recall" or "anamnestic" response. We found that results from in vitro neutralization assays did not always correlate with the ability of the antibodies to reduce viremia in a mouse model. In addition, a decrease of viremia in mice did not necessarily improve survival. The most protective antibodies were stable at pH 5, suggesting that antibody binding in the endosomes, after the antibody-virus complex is internalized, might be important to block virus spread in the organism.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Proteínas do Envelope Viral/antagonistas & inibidores , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/química , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/química , Reações Cruzadas , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Imunidade Humoral/efeitos dos fármacos , Memória Imunológica , Camundongos , Testes de Neutralização , Ligação Proteica , Estabilidade Proteica , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA