Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 116(4): 041302, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871320

RESUMO

Astrophysical observations spanning dwarf galaxies to galaxy clusters indicate that dark matter (DM) halos are less dense in their central regions compared to expectations from collisionless DM N-body simulations. Using detailed fits to DM halos of galaxies and clusters, we show that self-interacting DM (SIDM) may provide a consistent solution to the DM deficit problem across all scales, even though individual systems exhibit a wide diversity in halo properties. Since the characteristic velocity of DM particles varies across these systems, we are able to measure the self-interaction cross section as a function of kinetic energy and thereby deduce the SIDM particle physics model parameters. Our results prefer a mildly velocity-dependent cross section, from σ/m≈2 cm^{2}/g on galaxy scales to σ/m≈0.1 cm^{2}/g on cluster scales, consistent with the upper limits from merging clusters. Our results dramatically improve the constraints on SIDM models and may allow the masses of both DM and dark mediator particles to be measured even if the dark sector is completely hidden from the standard model, which we illustrate for the dark photon model.

2.
Phys Rev Lett ; 111(15): 151601, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160589

RESUMO

In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs boson plays a key role in two main theories of baryogenesis, namely, electroweak baryogenesis and leptogenesis. In this Letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs boson and discuss the associated signatures.

3.
Phys Rev Lett ; 110(11): 111301, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166522

RESUMO

A dark force can impact the cosmological history of dark matter (DM), both explaining observed cores in dwarf galaxies and setting the DM relic density through annihilation to dark force bosons. For GeV-TeV DM mass, DM self-scattering in dwarf galaxy halos exhibits quantum mechanical resonances, analogous to a Sommerfeld enhancement for annihilation. We show that a simple model of DM with a dark force can accommodate all astrophysical bounds on self-interactions in halos and explain the observed relic density, through a single coupling constant.

4.
Phys Rev Lett ; 105(21): 211304, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231286

RESUMO

We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

5.
Phys Rev Lett ; 102(6): 061301, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19257576

RESUMO

We analyze the quantum transport equations for supersymmetric electroweak baryogenesis including previously neglected bottom and tau Yukawa interactions and show that they imply the presence of a previously unrecognized dependence of the cosmic baryon asymmetry on the spectrum of third generation quark and lepton superpartners. For fixed values of the CP-violating phases in the supersymmetric theory, the baryon asymmetry can vary in both magnitude and sign as a result of the squark and slepton mass dependence. For light, right-handed top and bottom quark superpartners, the baryon number creation can be driven primarily by interactions involving third generation leptons and their superpartners.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA