Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432137

RESUMO

The adsorption of Eu(III) on composites synthesised from graphene oxide (GO), maghemite (MGH), and chitosan (CS) has been studied using different approaches. The physicochemical and morphological characteristics of the composites GO-MGH, GO-CS, GO-MGH-CS I, II, and III were determined by XRD, Mössbauer spectroscopy, FTIR, Raman spectroscopy, and TEM. According to the results of batch experiments, the maximum experimental adsorption capacity was 52, 54, 25, 103, and 102 mg/g for GO-MGH, GO-CS, GO-MGH-CS I, II, and III, respectively. The data obtained are in better agreement with the Langmuir, pseudo-second-order, and pseudo-first-order models only for GO-MGH. Thus, the adsorption of Eu(III) on the composites was a favourable, monolayer, and occurred at homogeneous sites. The nature of adsorption is chemical and, in the case of GO-MGH, physical. Tests of the composites in natural waters showed a high removal efficiency for Eu(III), Pu(IV), and Am(III), ranging from 74 to 100%. The ANFIS model has quite good predictive ability, as shown by the values for R2, MSE, SSE, and ARE. The GO-MGH-CS composites with the high adsorption capacity could be promising candidates for the removal of Eu(III) and the pre-concentration of Pu(IV) and Am(III) from natural waters.


Assuntos
Quitosana , Európio , Adsorção , Íons
2.
ACS Appl Energy Mater ; 5(12): 14769-14778, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36590878

RESUMO

Among inorganic, Earth-abundant, and low-toxicity photovoltaic technologies, Sb2Se3 has emerged as a strong material contender reaching over 10% solar cell power conversion efficiency. Nevertheless, the bottleneck of this technology is the high deficit of open-circuit voltage (V OC) as seen in many other emerging chalcogenide technologies. Commonly, the loss of V OC is related to the nonradiative carrier recombination through defects, but other material characteristics can also limit the achievable V OC. It has been reported that in isostructural compound Sb2S3, self-trapped excitons are readily formed leading to 0.6 eV Stokes redshift in photoluminescence (PL) and therefore significantly reducing the obtainable V OC. However, whether Sb2Se3 has the same limitations has not yet been examined. In this work, we aim to identify main radiative carrier recombination mechanisms in Sb2Se3 single crystals and estimate if there is a fundamental limit for obtainable V OC. Optical transitions in Sb2Se3 were studied by means of photoreflectance and PL spectroscopy. Temperature, excitation intensity, and polarization-dependent optical characteristics were measured and analyzed. We found that at low temperature, three distinct radiative recombination mechanisms were present and were strongly influenced by the impurities. The most intensive PL emissions were located near the band edge. In conclusion, no evidence of emission from self-trapped excitons or band-tails was observed, suggesting that there is no fundamental limitation to achieve high V OC, which is very important for further development of Sb2Se3-based solar cells.

3.
Opt Express ; 26(23): 30400-30408, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469914

RESUMO

Spectroscopic ellipsometry was used for the generation and study of the hybrid TPP-SPP mode as a sensor probe for the real-time formation of amalgam structures on the surface of a plasmon active gold layer. The Au/Hg amalgam formation features and the mercury atoms' penetration into the gold layer were determined by means of the experimental TIRE data and a regression analysis of a multi-layer model containing the index-profile amalgam layer. The hybrid TPP-SPP mode behavior of the coupled excitations provided more information about the mercury atoms' penetration into the gold layer than the single TPP and SPP resonances did. The present study demonstrated the possibility of using the hybrid TPP-SPP mode to design advanced optical gas sensor technologies.

4.
Opt Lett ; 41(23): 5616-5619, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906253

RESUMO

We present an original type of one-dimensional photonic crystal that includes one anisotropic layer made of a lithium niobate thin film. We demonstrate the versatility of such a device sustaining different Bloch surface waves (BSWs), depending on the orientation of the incident wave. By varying the orientation of the illumination of the multilayer, we measured an angle variation of 7° between the BSWs corresponding to the extraordinary and the ordinary index of the lithium niobate thin film. The potential of such a platform opens the way to novel tunable and active planar optics based on the electro- and thermo-optical properties of lithium niobate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA