Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 153: 106449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586228

RESUMO

The main (Mpro) and papain-like (PLpro) proteases are highly conserved viral proteins essential for replication of the COVID-19 virus, SARS-COV-2. Therefore, a logical plan for producing new drugs against this pathogen is to discover inhibitors of these enzymes. Accordingly, the goal of the present work was to devise a computational approach to design, characterize, and select compounds predicted to be potent dual inhibitors - effective against both Mpro and PLpro. The first step employed LigDream, an artificial neural network, to create a virtual ligand library. Ligands with computed ADMET profiles indicating drug-like properties and low mammalian toxicity were selected for further study. Initial docking of these ligands into the active sites of Mpro and PLpro was done with GOLD, and the highest-scoring ligands were redocked with AutoDock Vina to determine binding free energies (ΔG). Compounds 89-00, 89-07, 89-32, and 89-38 exhibited favorable ΔG values for Mpro (-7.6 to -8.7 kcal/mol) and PLpro (-9.1 to -9.7 kcal/mol). Global docking of selected compounds with the Mpro dimer identified prospective allosteric inhibitors 89-00, 89-27, and 89-40 (ΔG -8.2 to -8.9 kcal/mol). Molecular dynamics simulations performed on Mpro and PLpro active site complexes with the four top-scoring ligands from Vina demonstrated that the most stable complexes were formed with compounds 89-32 and 89-38. Overall, the present computational strategy generated new compounds with predicted drug-like characteristics, low mammalian toxicity, and high inhibitory potencies against both target proteases to form stable complexes. Further preclinical studies will be required to validate the in silico findings before the lead compounds could be considered for clinical trials.


Assuntos
COVID-19 , Peptídeo Hidrolases , Animais , SARS-CoV-2 , Simulação de Dinâmica Molecular , Ligantes , Estudos Prospectivos , Redes Neurais de Computação , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Mamíferos
2.
Chem Phys Lett ; 780: 138894, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34276059

RESUMO

The main protease (3CLpro) of SARS-CoV and SARS-CoV-2 is a promising target for discovery of novel antiviral agents. In this paper, new possible inhibitors of 3CLpro with high predicted binding affinity were detected through multistep computer-aided molecular design and bioisosteric replacements. For discovery of prospective 3CLpro binders several virtual ligand libraries were created and combined docking was performed. Moreover, the molecular dynamics simulation was applied for evaluation of protein-ligand complexes stability. Besides, important molecular properties and ADMET pharmacokinetic profiles of possible 3CLpro inhibitors were assessed by in silico prediction.

3.
Future Med Chem ; 13(12): 1041-1055, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33913733

RESUMO

Background: Antibiotic resistance, which occurs through the action of metallo-ß-lactamases (NDM-1), is a serious problem in the treatment of infectious diseases. Therefore, the discovery of new NDM-1 inhibitors and promising antibacterial agents as inhibitors of alternative targets (MetAP-1) is important. Method & results: In this study, a virtual library of 5-arylidene barbituric acids was created and molecular docking was performed for identification of novel possible inhibitors of NDM-1 and MetAP-1. Antibacterial activity (agar well-diffusion assay) and cytotoxicity (alamarBlue assay) of perspective compounds were evaluated. Pharmacokinetic profiles and molecular properties were predicted. Conclusion: We have identified possible novel inhibitors of NDM-1 and MetAP-1 with bacteriostatic activity, most of which are not cytotoxic and have potential excellent drug-likeness properties.


Assuntos
Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Animais , Antibacterianos/síntese química , Antibacterianos/química , Chlorocebus aethiops , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Staphylococcus aureus/efeitos dos fármacos , Células Vero , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química , beta-Lactamases/metabolismo
4.
Langmuir ; 36(20): 5546-5553, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357014

RESUMO

Surface-enhanced Raman scattering (SERS) is widely used for in vitro and in vivo bioimaging applications. However, reproducible and controllable fabrication of SERS tags with high density of electromagnetic hot-spots is still challenging. We report an improved strategy for the synthesis of core/shell Raman tags with high density of hot-spots and high immobilization of reporter molecules. The strategy is based on simultaneous growth and functionalization of an Au shell around Au nanospheres coated with 4-nitrobenzenethiol (NBT). The amount of added 4-NBT is key factor to control the structure SERS response of the resulting particles. Specifically, we demonstrate the formation of gap-enhanced Raman tags (GERTs) with a smooth solid shell (sGERTs), petal-like GERTs (pGERTs), and mesoporous Au particles (mGERTs) filled with Raman molecules. In contrast to NBT molecules, similar thiols such as 1,4-benzenedithiol (BDT) and 2-naphtalenethiol (NT) do not support the formation of pGERTs and mGERTs. To explain this finding, we proposed a growth mechanism based on the unique chemical structure of NBT. The SERS response of optimized pGERTs is 50 times higher than that from usual sGERTs, which makes pGERTs suitable for single-particle spectroscopy. We demonstrate successful application of pGERTs for high-speed cell imaging using 10 ms accumulation time per pixel and a total imaging time of about 1 min. Because of the high SERS response and unique porous structure, these nanoparticles have great potential for bioimaging and other applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA