Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Pathog ; 19(4): e1011298, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37075079

RESUMO

The global SARS-CoV-2 pandemic prompted rapid development of COVID-19 vaccines. Although several vaccines have received emergency approval through various public health agencies, the SARS-CoV-2 pandemic continues. Emergent variants of concern, waning immunity in the vaccinated, evidence that vaccines may not prevent transmission and inequity in vaccine distribution have driven continued development of vaccines against SARS-CoV-2 to address these public health needs. In this report, we evaluated a novel self-amplifying replicon RNA vaccine against SARS-CoV-2 in a pigtail macaque model of COVID-19 disease. We found that this vaccine elicited strong binding and neutralizing antibody responses against homologous virus. We also observed broad binding antibody against heterologous contemporary and ancestral strains, but neutralizing antibody responses were primarily targeted to the vaccine-homologous strain. While binding antibody responses were sustained, neutralizing antibody waned to undetectable levels in some animals after six months but were rapidly recalled and conferred protection from disease when the animals were challenged 7 months after vaccination as evident by reduced viral replication and pathology in the lower respiratory tract, reduced viral shedding in the nasal cavity and lower concentrations of pro-inflammatory cytokines in the lung. Cumulatively, our data demonstrate in pigtail macaques that a self-amplifying replicon RNA vaccine can elicit durable and protective immunity to SARS-CoV-2 infection. Furthermore, these data provide evidence that this vaccine can provide durable protective efficacy and reduce viral shedding even after neutralizing antibody responses have waned to undetectable levels.


Assuntos
Vacinas contra COVID-19 , Vacinas de mRNA , Vacinas contra COVID-19/imunologia , Macaca nemestrina , Pulmão/imunologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/transmissão
2.
Viruses ; 13(8)2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34452474

RESUMO

Selection of a pre-clinical non-human primate (NHP) model is essential when evaluating therapeutic vaccine and treatment strategies for HIV. SIV and SHIV-infected NHPs exhibit a range of viral burdens, pathologies, and responses to combinatorial antiretroviral therapy (cART) regimens and the choice of the NHP model for AIDS could influence outcomes in studies investigating interventions. Previously, in rhesus macaques (RMs) we showed that maintenance of mucosal Th17/Treg homeostasis during SIV infection correlated with a better virological response to cART. Here, in RMs we compared viral kinetics and dysregulation of gut homeostasis, defined by T cell subset disruption, during highly pathogenic SIVΔB670 compared to SHIV-1157ipd3N4 infection. SHIV infection resulted in lower acute viremia and less disruption to gut CD4 T-cell homeostasis. Additionally, 24/24 SHIV-infected versus 10/19 SIV-infected animals had sustained viral suppression <100 copies/mL of plasma after 5 months of cART. Significantly, the more profound viral suppression during cART in a subset of SIV and all SHIV-infected RMs corresponded with less gut immune dysregulation during acute SIV/SHIV infection, defined by maintenance of the Th17/Treg ratio. These results highlight significant differences in viral control during cART and gut dysregulation in NHP AIDS models and suggest that selection of a model may impact the evaluation of candidate therapeutic interventions for HIV treatment and cure strategies.


Assuntos
Antirretrovirais/uso terapêutico , Trato Gastrointestinal/imunologia , Homeostase , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Resposta Viral Sustentada , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Doença Aguda , Animais , Trato Gastrointestinal/fisiopatologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Linfócitos Intraepiteliais/imunologia , Cinética , Macaca mulatta , Masculino , Modelos Animais , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
3.
AIDS Res Hum Retroviruses ; 35(3): 295-305, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30398361

RESUMO

Depletion of gut T helper 17 (Th17) cells during HIV infection leads to decreased mucosal integrity and increased disease progression. Conversely, T regulatory (Treg) cells may inhibit antiviral responses or immune activation. In HIV elite controllers, a balanced Th17/Treg ratio is maintained in the blood, suggesting a role for these responses in controlling inflammation and viral replication. HIV-infected individuals exhibit a range in responsiveness to combination antiretroviral therapy (cART). Given the link between the Th17/Treg ratio and HIV disease, we reasoned these responses may play a role in cART responsiveness. In this study, we investigated the relationship between the mucosal Th17/Treg ratio to acute simian immunodeficiency virus (SIV) viremia and the response to cART. Nineteen rhesus macaques were infected with highly pathogenic SIVΔB670 virus and cART was initiated 6 weeks postinfection. Mucosal CD4 T cell subsets were assessed by intracellular cytokine staining in the colon and mesenteric lymph nodes. Higher baseline Th17/Treg ratios corresponded with increased acute SIV viremia. Th17/Treg ratios decreased during acute SIV infection and were not restored during cART, and this corresponded to increased gut immune activation (Ki67+), markers of microbial translocation (sCD14), and T cell exhaustion (TIGIT+). Animals that maintained a more balanced mucosal Th17/Treg ratio at the time of cART initiation exhibited a better virological response to cART and maintained higher peripheral CD4 counts. These results suggest mucosal Th17 and Treg homeostasis influences acute viremia and the response to cART, a result that suggests therapeutic interventions that improve the Th17/Treg ratio before or during cART may improve treatment of HIV.


Assuntos
Antirretrovirais/uso terapêutico , Homeostase/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Viremia/virologia , Animais , Antirretrovirais/administração & dosagem , Colo/patologia , Modelos Animais de Doenças , Infecções por HIV/imunologia , Mucosa Intestinal/imunologia , Linfonodos/imunologia , Macaca mulatta , Masculino , Mesentério , Doenças dos Macacos/tratamento farmacológico , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento , Carga Viral/genética
4.
J Immunol ; 198(2): 757-766, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974456

RESUMO

During chronic lentiviral infection, poor clinical outcomes correlate both with systemic inflammation and poor proliferative ability of HIV-specific T cells; however, the connection between the two is not clear. Myeloid-derived suppressor cells (MDSC), which expand during states of elevated circulating inflammatory cytokines, may link the systemic inflammation and poor T cell function characteristic of lentiviral infections. Although MDSC are partially characterized in HIV and SIV infection, questions remain regarding their persistence, activity, and clinical significance. We monitored MDSC frequency and function in SIV-infected rhesus macaques. Low MDSC frequency was observed prior to SIV infection. Post-SIV infection, MDSC were elevated in acute infection and persisted during 7 mo of combination antiretroviral drug therapy (cART). After cART interruption, we observed MDSC expansion of surprising magnitude, the majority being granulocytic MDSC. At all stages of infection, granulocytic MDSC suppressed CD4+ and CD8+ T cell proliferation in response to polyclonal or SIV-specific stimulation. In addition, MDSC frequency correlated significantly with circulating inflammatory cytokines. Acute and post-cART levels of viremia were similar, however, the levels of inflammatory cytokines and MDSC were more pronounced post-cART. Expanded MDSC during SIV infection, especially during the post-cART inflammatory cytokine surge, likely limit cellular responses to infection. As many HIV curative strategies require cART interruption to determine efficacy, our work suggests treatment interruption-induced MDSC may especially undermine the effectiveness of such strategies. MDSC depletion may enhance T cell responses to lentiviral infection and the effectiveness of curative approaches.


Assuntos
Antirretrovirais/administração & dosagem , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA