Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270921

RESUMO

Ensuring the quality of fresh-cut vegetables is the greatest challenge for the food industry and is equally as important to consumers (and their health). Several investigations have proven the necessity of advanced technology for detecting foreign materials (FMs) in fresh-cut vegetables. In this study, the possibility of using near infrared spectral analysis as a potential technique was investigated to identify various types of FMs in seven common fresh-cut vegetables by selecting important wavebands. Various waveband selection methods, such as the weighted regression coefficient (WRC), variable importance in projection (VIP), sequential feature selection (SFS), successive projection algorithm (SPA), and interval PLS (iPLS), were used to investigate the optimal multispectral wavebands to classify the FMs and vegetables. The application of selected wavebands was further tested using NIR imaging, and the results showed good potentiality by identifying 99 out of 107 FMs. The results indicate the high applicability of the multispectral NIR imaging technique to detect FMs in fresh-cut vegetables for industrial application.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Verduras , Algoritmos , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Foods ; 11(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35053964

RESUMO

The demand for rapid and nondestructive methods to determine chemical components in food and agricultural products is proliferating due to being beneficial for screening food quality. This research investigates the feasibility of Fourier transform near-infrared (FT-NIR) and Fourier transform infrared spectroscopy (FT-IR) to predict total as well as an individual type of isoflavones and oligosaccharides using intact soybean samples. A partial least square regression method was performed to develop models based on the spectral data of 310 soybean samples, which were synchronized to the reference values evaluated using a conventional assay. Furthermore, the obtained models were tested using soybean varieties not initially involved in the model construction. As a result, the best prediction models of FT-NIR were allowed to predict total isoflavones and oligosaccharides using intact seeds with acceptable performance (R2p: 0.80 and 0.72), which were slightly better than the model obtained based on FT-IR data (R2p: 0.73 and 0.70). The results also demonstrate the possibility of using FT-NIR to predict individual types of evaluated components, denoted by acceptable performance values of prediction model (R2p) of over 0.70. In addition, the result of the testing model proved the model's performance by obtaining a similar R2 and error to the calibration model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA