Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Equine Vet J ; 56(3): 573-585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37376723

RESUMO

BACKGROUND: Strategies for articular cartilage repair need to take into account topographical differences in tissue composition and architecture to achieve durable functional outcome. These have not yet been investigated in the equine stifle. OBJECTIVES: To analyse the biochemical composition and architecture of three differently loaded areas of the equine stifle. We hypothesise that site differences correlate with the biomechanical characteristics of the cartilage. STUDY DESIGN: Ex vivo study. METHODS: Thirty osteochondral plugs per location were harvested from the lateral trochlear ridge (LTR), the distal intertrochlear groove (DITG) and the medial femoral condyle (MFC). These underwent biochemical, biomechanical and structural analysis. A linear mixed model with location as a fixed factor and horse as a random factor was applied, followed by pair-wise comparisons of estimated means with false discovery rate correction, to test for differences between locations. Correlations between biochemical and biomechanical parameters were tested using Spearman's correlation coefficient. RESULTS: Glycosaminoglycan content was different between all sites (estimated mean [95% confidence interval (CI)] for LTR 75.4 [64.5, 88.2], for intercondylar notch (ICN) 37.3 [31.9, 43.6], for MFC 93.7 [80.1109.6] µg/mg dry weight), as were equilibrium modulus (LTR2.20 [1.96, 2.46], ICN0.48 [0.37, 0.6], MFC1.36 [1.17, 1.56] MPa), dynamic modulus (LTR7.33 [6.54, 8.17], ICN4.38 [3.77, 5.03], MFC5.62 [4.93, 6.36] MPa) and viscosity (LTR7.49 [6.76, 8.26], ICN16.99 [15.88, 18.14], MFC8.7 [7.91,9.5]°). The two weightbearing areas (LTR and MCF) and the non-weightbearing area (ICN) differed in collagen content (LTR 139 [127, 152], ICN176[162, 191], MFC 127[115, 139] µg/mg dry weight), parallelism index and angle of collagen fibres. The strongest correlations were between proteoglycan content and equilibrium modulus (r: 0.642; p: 0.001), dynamic modulus (r: 0.554; p < 0.001) and phase shift (r: -0.675; p < 0.001), and between collagen orientation angle and equilibrium modulus (r: -0.612; p < 0.001), dynamic modulus (r: -0.424; p < 0.001) and phase shift (r: 0.609; p < 0.001). MAIN LIMITATIONS: Only a single sample per location was analysed. CONCLUSIONS: There were significant differences in cartilage biochemical composition, biomechanics and architecture between the three differently loaded sites. The biochemical and structural composition correlated with the mechanical characteristics. These differences need to be acknowledged by designing cartilage repair strategies.


INTRODUCTION/CONTEXTE: Les stratégies de réparation du cartilage articulaire doivent tenir compte des différences topographiques en ce qui a trait à la composition et l'architecture des tissues, afin d'obtenir un résultat durable et fonctionnel. Celles­ci n'ont pas encore été étudiées chez le grasset équin. OBJECTIFS: Analyser la composition biochimique et l'architecture de trois régions du grasset portant une quantité de poids différente. Nous émettons l'hypothèse que les différences entre régions seront corrélées aux caractéristiques biomécaniques du cartilage. TYPE D'ÉTUDE: Étude ex vivo. MÉTHODES: Trente échantillons ostéochondraux par site ont été récoltés à partir de la lèvre latérale de la trochlée fémorale (LTR), le sillon intertrochléaire distal (DITG) et le condyle fémoral médial (MFC). Ceux­ci ont été soumis à des tests biochimiques, biomécaniques et une analyse structurelle. Un modèle linéaire mixte avec localisation comme facteur fixe et cheval comme facteur randomisé a été appliqué. Puis, ont suivi des comparaisons par paires de moyennes estimées avec contrôle du taux de fausses découvertes, pour tester les différences entre les divers sites. Les corrélations entre les paramètres biochimiques et biomécaniques ont été testé par le coefficient de corrélation Spearman. RÉSULTATS: Le contenu en glycosaminoglycans était différent à chacun des sites (moyenne estimée [95% CI] pour LTR 75.4 [64.5, 88.2], pour ICN 37.3 [31.9, 43.6], pour MFC 93.7[80.1109.6]µg/mg matière sèche), tout comme le module d'équilibre (LTR2.20 [1.96, 2.46], ICN0.48 [0.37, 0.6], MFC1.36 [1.17, 1.56] MPa), le module dynamique (LTR7.33 [6.54, 8.17], ICN4.38[3.77, 5.03], MFC5.62[4.93, 6.36] MPa) et la viscosité (LTR7.49[6.76, 8.26], ICN16.99 [15.88, 18.14], MFC8.7 [7.91, 9.5]°). Les deux régions portant du poids (LTR et MFC) et la région ne supportant pas de poids (ICN) diffèrent par rapport à leur contenu en collagène (LTR 139 [127152], ICN176 [162191], MFC 127 [115139] µg/mg matière sèche), à l'index de parallélisle et à l'angle des fibres de collagène. Les corrélations les plus fortes étaient entre le contenu en protéoglycans et le module d'équilibre (r: 0.642; p: 0.001), le module dynamique (r: 0.554; p < 0.001) et le changement de phase (r:−0.675; p < 0.001), et entre l'angle d'orientation du collagène et le module d'équilibre (r:−0.612; p < 0.001), le module dynamique (r:−0.424; p < 0.001) et le changement de phase (r: 0.609;p:<0.001). LIMITES PRINCIPALES: Seulement un échantillon par site a été soumis aux analyses. CONCLUSIONS: Il existe des différences significatives dans la composition biochimique, biomécanique et l'architecture du cartilage entre les trois sites échantillonnés. La composition biochimique et structurelle corrèle avec les caractéristiques mécaniques. Ces différences doivent être prises en compte lors de la création de stratégies de réparation du cartilage.


Assuntos
Cartilagem Articular , Animais , Cavalos , Cartilagem Articular/química , Joelho de Quadrúpedes/química , Proteoglicanas/análise , Glicosaminoglicanos/análise , Colágeno/análise , Fenômenos Biomecânicos
2.
Osteoarthritis Cartilage ; 32(3): 299-309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061579

RESUMO

OBJECTIVE: Cationic tantalum oxide nanoparticles (Ta2O5-cNPs), as a newly introduced contrast agent for computed tomography of cartilage, offer quantitative evaluation of proteoglycan (PG) content and biomechanical properties. However, knowledge on the depth-wise impact of cartilage constituents on nanoparticle diffusion, particularly the influence of the collagen network, is lacking. In this study, we aim to establish the depth-dependent relationship between Ta2O5-cNP diffusion and cartilage constituents (PG content, collagen content and network architecture). METHODS: Osteochondral samples (n = 30) were harvested from healthy equine stifle joints (N = 15) and the diffusion of 2.55 nm diameter cationic Ta2O5-cNPs into the cartilage was followed with micro computed tomography (µCT) imaging for up to 96 hours. The diffusion-related parameters, Ta2O5-cNP maximum partition (Pmax) and diffusion time constant, were compared against biomechanical and depth-wise structural properties. Biomechanics were assessed using stress-relaxation and sinusoidal loading protocols, whereas PG content, collagen content and collagen network architecture were determined using digital densitometry, Fourier-transform infrared spectroscopy and polarized light microscopy, respectively. RESULTS: The Pmax correlates with the depth-wise distribution of PGs (bulk Spearman's ρ = 0.87, p < 0.001). More open collagen network architecture at the superficial zone enhances intake of Ta2O5-cNPs, but collagen content overall decreases the intake. The Pmax values correlate with the equilibrium modulus (ρ = 0.80, p < 0.001) of articular cartilage. CONCLUSION: This study establishes the feasibility of Ta2O5-cNPs for the precise and comprehensive identification of biomechanical and structural changes in articular cartilage via contrast-enhanced µCT.


Assuntos
Cartilagem Articular , Óxidos , Tantálio , Animais , Cavalos , Cartilagem Articular/diagnóstico por imagem , Meios de Contraste , Microtomografia por Raio-X , Proteoglicanas , Colágeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA