Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Prog Nucl Magn Reson Spectrosc ; 138-139: 105-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38065666

RESUMO

This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.


Assuntos
Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos
2.
PLoS Pathog ; 19(11): e1011787, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943960

RESUMO

Plasma of COVID-19 patients contains a strong metabolomic/lipoproteomic signature, revealed by the NMR analysis of a cohort of >500 patients sampled during various waves of COVID-19 infection, corresponding to the spread of different variants, and having different vaccination status. This composite signature highlights common traits of the SARS-CoV-2 infection. The most dysregulated molecules display concentration trends that scale with disease severity and might serve as prognostic markers for fatal events. Metabolomics evidence is then used as input data for a sex-specific multi-organ metabolic model. This reconstruction provides a comprehensive view of the impact of COVID-19 on the entire human metabolism. The human (male and female) metabolic network is strongly impacted by the disease to an extent dictated by its severity. A marked metabolic reprogramming at the level of many organs indicates an increase in the generic energetic demand of the organism following infection. Sex-specific modulation of immune response is also suggested.


Assuntos
COVID-19 , Humanos , Feminino , Masculino , SARS-CoV-2 , Metabolômica , Gravidade do Paciente , Fenótipo
3.
RSC Adv ; 13(31): 21629-21632, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37476042

RESUMO

NMR metabolomics is a powerful tool to characterise the changes in cancer cell metabolism elicited by anticancer drugs. Here, the large metabolic alterations produced by two cytotoxic gold carbene compounds in A2780 ovarian cancer cells are described and discussed in comparison to auranofin, in the frame of the available mechanistic knowledge.

4.
J Inorg Biochem ; 244: 112236, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146532

RESUMO

Herein we describe a method for the efficient production (∼90% fluorination) of 5-F-Trp human H ferritin via the selective incorporation of 19F into the side chain of W93 using 5-fluoroindole as the fluorinated precursor of the amino acid. Human H ferritin is a nanocage composed of 24 identical subunits, each containing a single Trp belonging to a loop exposed on the external surface of the protein nanocage. This makes 5-F-Trp a potential probe for the study of intermolecular interactions in solution by exploiting its intrinsic fluorescence. More interestingly, albeit the large size of the cage (12 nm external diameter, ∼500 kDa molecular mass) we observe a broad but well defined NMR 19F resonance that can be used for the dual purpose of detecting solution intermolecular interactions via chemical shift perturbation mapping and monitoring the uptake of ferritin by cells treated with ferritin-based drug carriers, the latter being an application area of increasing importance.


Assuntos
Apoferritinas , Ferritinas , Humanos , Ferritinas/química , Aminoácidos/química , Espectroscopia de Ressonância Magnética , Portadores de Fármacos
5.
mSystems ; 8(2): e0112422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847563

RESUMO

Microbial communities experience continuous environmental changes, with temperature fluctuations being the most impacting. This is particularly important considering the ongoing global warming but also in the "simpler" context of seasonal variability of sea-surface temperature. Understanding how microorganisms react at the cellular level can improve our understanding of their possible adaptations to a changing environment. In this work, we investigated the mechanisms through which metabolic homeostasis is maintained in a cold-adapted marine bacterium during growth at temperatures that differ widely (15 and 0°C). We have quantified its intracellular and extracellular central metabolomes together with changes occurring at the transcriptomic level in the same growth conditions. This information was then used to contextualize a genome-scale metabolic reconstruction, and to provide a systemic understanding of cellular adaptation to growth at 2 different temperatures. Our findings indicate a strong metabolic robustness at the level of the main central metabolites, counteracted by a relatively deep transcriptomic reprogramming that includes changes in gene expression of hundreds of metabolic genes. We interpret this as a transcriptomic buffering of cellular metabolism, able to produce overlapping metabolic phenotypes, despite the wide temperature gap. Moreover, we show that metabolic adaptation seems to be mostly played at the level of few key intermediates (e.g., phosphoenolpyruvate) and in the cross talk between the main central metabolic pathways. Overall, our findings reveal a complex interplay at gene expression level that contributes to the robustness/resilience of core metabolism, also promoting the leveraging of state-of-the-art multi-disciplinary approaches to fully comprehend molecular adaptations to environmental fluctuations. IMPORTANCE This manuscript addresses a central and broad interest topic in environmental microbiology, i.e. the effect of growth temperature on microbial cell physiology. We investigated if and how metabolic homeostasis is maintained in a cold-adapted bacterium during growth at temperatures that differ widely and that match measured changes on the field. Our integrative approach revealed an extraordinary robustness of the central metabolome to growth temperature. However, this was counteracted by deep changes at the transcriptional level, and especially in the metabolic part of the transcriptome. This conflictual scenario was interpreted as a transcriptomic buffering of cellular metabolism, and was investigated using genome-scale metabolic modeling. Overall, our findings reveal a complex interplay at gene expression level that contributes to the robustness/resilience of core metabolism, also promoting the use of state-of-the-art multi-disciplinary approaches to fully comprehend molecular adaptations to environmental fluctuations.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Temperatura , Metaboloma , Adaptação Fisiológica/genética , Bactérias
6.
Handb Exp Pharmacol ; 277: 209-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36318327

RESUMO

The aim of this chapter is to highlight the various aspects of metabolomics in relation to health and diseases, starting from the definition of metabolic space and of how individuals tend to maintain their own position in this space. Physio-pathological stimuli may cause individuals to lose their position and then regain it, or move irreversibly to other positions. By way of examples, mostly selected from our own work using 1H NMR on biological fluids, we describe the effects on the individual metabolomic fingerprint of mild external interventions, such as diet or probiotic administration. Then we move to pathologies (such as celiac disease, various types of cancer, viral infections, and other diseases), each characterized by a well-defined metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its reversal to a healthy metabolomic status. Drug toxicity can be also monitored by metabolomics. We also show how the individual metabolomic fingerprint at the onset of a disease may discriminate responders from non-responders to a given drug, or how it may be prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling (i.e., the identification and quantification of many metabolites and, in the case of selected biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can provide hints on the metabolic pathways that are altered by a disease and assess their restoration after treatment.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética
7.
Dalton Trans ; 51(33): 12512-12523, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943404

RESUMO

Pt-Based drugs play a very important role in current cancer treatments; yet, their cellular and mechanistic aspects are not fully understood. NMR metabolomics provides a powerful tool to investigate the metabolic perturbations induced by Pt drugs in cancer cells and decipher their meaning in relation to the presumed molecular mechanisms. We have carried out a systematic and comparative 1H NMR metabolomics study to analyze the responses of A2780 human ovarian cancer cells to the main clinically established Pt drugs, i.e., cisplatin, carboplatin and oxaliplatin. Notably, NMR analysis revealed some moderate and consistent changes in the metabolomic profiles of A2780 cells treated with the 3 Pt drugs with respect to controls, but only very small differences among them. Beyond alterations at the level of nucleic acid precursors, the observed changes highlight in all cases the induction of a significant endoplasmic reticulum stress. Owing to the clinical relevance of platinum resistance, the behavior of a cisplatin resistant A2780 cancer cell line upon cisplatin treatment was also evaluated.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo
8.
PLoS Pathog ; 18(4): e1010443, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446921

RESUMO

Metabolomics and lipidomics have been used in several studies to define the biochemical alterations induced by COVID-19 in comparison with healthy controls. Those studies highlighted the presence of a strong signature, attributable to both metabolites and lipoproteins/lipids. Here, 1H NMR spectra were acquired on EDTA-plasma from three groups of subjects: i) hospitalized COVID-19 positive patients (≤21 days from the first positive nasopharyngeal swab); ii) hospitalized COVID-19 positive patients (>21 days from the first positive nasopharyngeal swab); iii) subjects after 2-6 months from SARS-CoV-2 eradication. A Random Forest model built using the EDTA-plasma spectra of COVID-19 patients ≤21 days and Post COVID-19 subjects, provided a high discrimination accuracy (93.6%), indicating both the presence of a strong fingerprint of the acute infection and the substantial metabolic healing of Post COVID-19 subjects. The differences originate from significant alterations in the concentrations of 16 metabolites and 74 lipoprotein components. The model was then used to predict the spectra of COVID-19>21 days subjects. In this group, the metabolite levels are closer to those of the Post COVID-19 subjects than to those of the COVID-19≤21 days; the opposite occurs for the lipoproteins. Within the acute phase patients, characteristic trends in metabolite levels are observed as a function of the disease severity. The metabolites found altered in COVID-19≤21 days patients with respect to Post COVID-19 individuals overlap with acute infection biomarkers identified previously in comparison with healthy subjects. Along the trajectory towards healing, the metabolome reverts back to the "healthy" state faster than the lipoproteome.


Assuntos
COVID-19 , Ácido Edético , Humanos , Lipoproteínas , Metabolômica/métodos , SARS-CoV-2
9.
Front Mol Biosci ; 9: 839809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480886

RESUMO

1H NMR spectra of sera have been used to define the changes induced by vaccination with Pfizer-BioNTech vaccine (2 shots, 21 days apart) in 10 COVID-19-recovered subjects and 10 COVID-19-naïve subjects at different time points, starting from before vaccination, then weekly until 7 days after second injection, and finally 1 month after the second dose. The data show that vaccination does not induce any significant variation in the metabolome, whereas it causes changes at the level of lipoproteins. The effects are different in the COVID-19-recovered subjects with respect to the naïve subjects, suggesting that a previous infection reduces the vaccine modulation of the lipoproteome composition.

10.
J Proteome Res ; 21(4): 1061-1072, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271285

RESUMO

Blood derivatives are the biofluids of choice for metabolomic clinical studies since blood can be collected with low invasiveness and is rich in biological information. However, the choice of the blood collection tubes has an undeniable impact on the plasma and serum metabolic content. Here, we compared the metabolomic and lipoprotein profiles of blood samples collected at the same time and place from six healthy volunteers but using different collection tubes (each enrolled volunteer provided multiple blood samples at a distance of a few weeks/months): citrate plasma, EDTA plasma, and serum tubes. All samples were analyzed via nuclear magnetic resonance spectroscopy. Several metabolites showed statistically significant alterations among the three blood matrices, and also metabolites' correlations were shown to be affected. The effects of blood collection tubes on the lipoproteins' profiles are relevant too, but less marked. Overcoming the issue associated with different blood collection tubes is pivotal to scale metabolomics and lipoprotein analysis at the level of epidemiological studies based on samples from multicenter cohorts. We propose a statistical solution, based on regression, that is shown to be efficient in reducing the alterations induced by the different collection tubes for both the metabolomic and lipoprotein profiles.


Assuntos
Plasma , Soro , Coleta de Amostras Sanguíneas/métodos , Ácido Cítrico/metabolismo , Humanos , Metabolômica/métodos , Plasma/química , Soro/química
11.
NPJ Parkinsons Dis ; 8(1): 14, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136088

RESUMO

Parkinson's disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress.

12.
Cells ; 11(4)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203362

RESUMO

BACKGROUND: Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS: Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION: Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.


Assuntos
Adiponectina , Lisofosfolipídeos , Fibras Musculares Esqueléticas , Esfingosina , Adiponectina/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida , Lisofosfolipídeos/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometria de Massas em Tandem
13.
N Biotechnol ; 68: 37-47, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35066155

RESUMO

The development of metabolomics in clinical applications has been limited by the lack of validation in large multicenter studies. Large population cohorts and their biobanks are a valuable resource for acquiring insights into molecular disease mechanisms. Nevertheless, most of their collections are not tailored for metabolomics and have been created without specific attention to the pre-analytical requirements for high-quality metabolome assessment. Thus, comparing samples obtained by different pre-analytical procedures remains a major challenge. Here, 1H NMR-based analyses are used to demonstrate how human serum and plasma samples collected with different operating procedures within several large European cohort studies from the Biobanking and Biomolecular Resources Infrastructure - Large Prospective Cohorts (BBMRI-LPC) consortium can be easily revealed by supervised multivariate statistical analyses at the initial stages of the process, to avoid biases in the downstream analysis. The inter-biobank differences are discussed in terms of deviations from the validated CEN/TS 16945:2016 / ISO 23118:2021 norms. It clearly emerges that biobanks must adhere to the evidence-based guidelines in order to support wider-scale application of metabolomics in biomedicine, and that NMR spectroscopy is informative in comparing the quality of different sample sources in multi cohort/center studies.


Assuntos
Bancos de Espécimes Biológicos , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Estudos Prospectivos , Soro
14.
Dalton Trans ; 50(45): 16464-16467, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34729572

RESUMO

Human cytoplasmic ferritins are heteropolymers of H and L subunits containing a catalytic ferroxidase center and a nucleation site for iron biomineralization, respectively. Here, ESI-MS successfully detected labile metal-protein interactions revealing the formation of tetra- and octa-iron clusters bound to L subunits, as previously underscored by X-ray crystallography.


Assuntos
Apoferritinas/química , Ferro/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Modelos Moleculares , Peso Molecular
15.
BMC Med Inform Decis Mak ; 21(1): 274, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600518

RESUMO

BACKGROUND: Artificial intelligence (AI) has the potential to transform our healthcare systems significantly. New AI technologies based on machine learning approaches should play a key role in clinical decision-making in the future. However, their implementation in health care settings remains limited, mostly due to a lack of robust validation procedures. There is a need to develop reliable assessment frameworks for the clinical validation of AI. We present here an approach for assessing AI for predicting treatment response in triple-negative breast cancer (TNBC), using real-world data and molecular -omics data from clinical data warehouses and biobanks. METHODS: The European "ITFoC (Information Technology for the Future Of Cancer)" consortium designed a framework for the clinical validation of AI technologies for predicting treatment response in oncology. RESULTS: This framework is based on seven key steps specifying: (1) the intended use of AI, (2) the target population, (3) the timing of AI evaluation, (4) the datasets used for evaluation, (5) the procedures used for ensuring data safety (including data quality, privacy and security), (6) the metrics used for measuring performance, and (7) the procedures used to ensure that the AI is explainable. This framework forms the basis of a validation platform that we are building for the "ITFoC Challenge". This community-wide competition will make it possible to assess and compare AI algorithms for predicting the response to TNBC treatments with external real-world datasets. CONCLUSIONS: The predictive performance and safety of AI technologies must be assessed in a robust, unbiased and transparent manner before their implementation in healthcare settings. We believe that the consideration of the ITFoC consortium will contribute to the safe transfer and implementation of AI in clinical settings, in the context of precision oncology and personalized care.


Assuntos
Inteligência Artificial , Neoplasias , Algoritmos , Humanos , Aprendizado de Máquina , Medicina de Precisão
16.
Metabolites ; 11(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34436432

RESUMO

hCDKL5 refers to the human cyclin-dependent kinase like 5 that is primarily expressed in the brain. Mutations in its coding sequence are often causative of hCDKL5 deficiency disorder, a devastating neurodevelopmental disorder currently lacking a cure. The large-scale recombinant production of hCDKL5 is desirable to boost the translation of preclinical therapeutic approaches into the clinic. However, this is hampered by the intrinsically disordered nature of almost two-thirds of the hCDKL5 sequence, making this region more susceptible to proteolytic attack, and the observed toxicity when the enzyme is accumulated in the cytoplasm of eukaryotic host cells. The bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is the only prokaryotic host in which the full-length production of hCDKL5 has been demonstrated. To date, a system-level understanding of the metabolic burden imposed by hCDKL5 production is missing, although it would be crucial for upscaling of the production process. Here, we combined experimental data on protein production and nutrients assimilation with metabolic modelling to infer the global consequences of hCDKL5 production in PhTAC125 and to identify potential overproduction targets. Our analyses showed a remarkable accuracy of the model in simulating the recombinant strain phenotype and also identified priority targets for optimised protein production.

17.
Chemistry ; 27(59): 14690-14701, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34343376

RESUMO

Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.


Assuntos
Ceruloplasmina , Compostos Férricos , Animais , Apoferritinas/metabolismo , Sítios de Ligação , Ceruloplasmina/metabolismo , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Oxirredução
19.
Sci Rep ; 11(1): 13025, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158597

RESUMO

Mammographic breast density (MBD) is a strong independent risk factor for breast cancer (BC). We designed a matched case-case study in the EPIC Florence cohort, to evaluate possible associations between the pre-diagnostic metabolomic profile and the risk of BC in high- versus low-MBD women who developed BC during the follow-up. A case-case design with 100 low-MBD (MBD ≤ 25%) and 100 high-MDB BC cases (MBD > 50%) was performed. Matching variables included age, year and type of mammographic examination. 1H NMR metabolomic spectra were available for 87 complete case-case sets. The conditional logistic analyses showed an inverse association between serum levels of alanine, leucine, tyrosine, valine, lactic acid, pyruvic acid, triglycerides lipid main fraction and 11 VLDL lipid subfractions and high-MBD cases. Acetic acid was directly associated with high-MBD cases. In models adjusted for confounding variables, tyrosine remained inversely associated with high-MBD cases while 3 VLDL subfractions of free cholesterol emerged as directly associated with high-MBD cases. A pathway analysis showed that the "phenylalanine, tyrosine and tryptophan pathway" emerged and persisted after applying the FDR procedure. The supervised OPLS-DA analysis revealed a slight but significant separation between high- and low-MBD cases. This case-case study suggested a possible role for pre-diagnostic levels of tyrosine in modulating the risk of BC in high- versus low-MBD women. Moreover, some differences emerged in the pre-diagnostic concentration of other metabolites as well in the metabolomic fingerprints among the two groups of patients.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico , Mamografia , Metaboloma , Adulto , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Lipídeos/sangue , Lipoproteínas/sangue , Pessoa de Meia-Idade , Análise de Componente Principal
20.
Dalton Trans ; 50(18): 6349-6355, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33885689

RESUMO

NMR metabolomics represents a powerful tool to characterize the cellular effects of drugs and gain detailed insight into their mode of action. Here, we have exploited NMR metabolomics to illustrate the changes in the metabolic profile of A2780 ovarian cancer cells elicited by auranofin (AF), a clinically approved gold drug now repurposed as an anticancer agent. An early and large increase in intracellular glutathione is highlighted as the main effect of the treatment accompanied by small but significant changes in the levels of a few additional metabolites; the general implications of these findings are discussed in the frame of the current mechanistic knowledge of AF.


Assuntos
Antineoplásicos/metabolismo , Auranofina/metabolismo , Glutationa/metabolismo , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Antineoplásicos/química , Antineoplásicos/farmacologia , Auranofina/química , Glutationa/antagonistas & inibidores , Humanos , Conformação Molecular , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA