Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Stem Cell Res ; 78: 103468, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852424

RESUMO

Hypomyelinating leukodystrophies (HLD) are a group of heterogeneous genetic disorders characterized by a deficit in myelin deposition during brain development. Specifically, 4H-Leukodystrophy is a recessive disease due to biallelic mutations in the POLR3A gene, which encodes one of the subunits forming the catalytic core of RNA polymerase III (PolIII). The disease also presents non-neurological signs such as hypodontia and hypogonadotropic hypogonadism. Here, we report the generation of a human induced pluripotent stem cell (hiPSC) line from fibroblasts of the first identified carrier of the biallelic POLR3A variants c.1802 T > A and c.4072G > A.


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA Polimerase III , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Linhagem Celular , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Masculino , Alelos
3.
Stem Cell Res ; 67: 103023, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638628

RESUMO

Familial Hypocalciuric Hypercalcemia (FHH1) is a rare autosomal dominant disease with low penetrance, caused by inactivating mutations of the calcium-sensing receptor (CaSR) gene, characterized by significant hypercalcemia, inappropriately normal serum PTH levels and a low urinary calcium level. Human induced pluripotent stem cells (hiPSCs) from a patient carrying a previously identified heterozygous mutation, a p.T972M amino acid substitution in cytoplasmic tail of CasR, were produced using a virus, xeno-free and non-integrative protocol.


Assuntos
Hipercalcemia , Células-Tronco Pluripotentes Induzidas , Humanos , Mutação Puntual , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipercalcemia/genética , Mutação , Cálcio
4.
Cell Death Dis ; 13(11): 981, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411275

RESUMO

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.


Assuntos
Síndrome de Smith-Magenis , Humanos , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/patologia , Haploinsuficiência/genética , Metabolismo dos Lipídeos/genética , Fatores de Transcrição/metabolismo , Transativadores/metabolismo , Fenótipo , Autofagia/genética , Tretinoína/farmacologia , Tretinoína/metabolismo , Lipídeos
5.
Front Cell Dev Biol ; 10: 1107881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684422

RESUMO

The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is widely expressed in the central and peripheral nervous systems. This receptor is implicated in both brain development and adult neurogenesis thanks to its ability to mediate acetylcholine stimulus (Ach). Copy number variations (CNVs) of CHRNA7 gene have been identified in humans and are genetically linked to cognitive impairments associated with multiple disorders, including schizophrenia, bipolar disorder, epilepsy, Alzheimer's disease, and others. Currently, α7 receptor analysis has been commonly performed in animal models due to the impossibility of direct investigation of the living human brain. But the use of model systems has shown that there are very large differences between humans and mice when researchers must study the CNVs and, in particular, the CNV of chromosome 15q13.3 where the CHRNA7 gene is present. In fact, human beings present genomic alterations as well as the presence of genes of recent origin that are not present in other model systems as well as they show a very heterogeneous symptomatology that is associated with both their genetic background and the environment where they live. To date, the induced pluripotent stem cells, obtained from patients carrying CNV in CHRNA7 gene, are a good in vitro model for studying the association of the α7 receptor to human diseases. In this review, we will outline the current state of hiPSCs technology applications in neurological diseases caused by CNVs in CHRNA7 gene. Furthermore, we will discuss some weaknesses that emerge from the overall analysis of the published articles.

6.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533246

RESUMO

Cellular, organ, and whole animal physiology show temporal variation predominantly featuring 24-h (circadian) periodicity. Time-course mRNA gene expression profiling in mouse liver showed two subsets of genes oscillating at the second (12-h) and third (8-h) harmonic of the prime (24-h) frequency. The aim of our study was to identify specific genomic, proteomic, and functional properties of ultradian and circadian subsets. We found hallmarks of the three oscillating gene subsets, including different (i) functional annotation, (ii) proteomic and electrochemical features, and (iii) transcription factor binding motifs in upstream regions of 8-h and 12-h oscillating genes that seemingly allow the link of the ultradian gene sets to a known circadian network. Our multifaceted bioinformatics analysis of circadian and ultradian genes suggests that the different rhythmicity of gene expression impacts physiological outcomes and may be related to transcriptional, translational and post-translational dynamics, as well as to phylogenetic and evolutionary components.


Assuntos
Genômica , Mamíferos/genética , Mamíferos/metabolismo , Proteômica , Animais , Sítios de Ligação , Biomarcadores , Mapeamento Cromossômico , Biologia Computacional/métodos , Epigênese Genética , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Proteoma , Proteômica/métodos , Fatores de Tempo , Fatores de Transcrição
7.
Stem Cell Res ; 32: 73-77, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30218896

RESUMO

CHRNA7, encoding the neuronal alpha7 nicotinic acetylcholine receptor (a7nAChR), is highly expressed in the brain, particularly in the hippocampus. It is situated in the 15q13.3 chromosome region, frequently associated with a Copy Number Variation (CNV), which causes its duplication or deletion. The clinical significance of CHRNA7 duplications is unknown so far, but there are several research data suggesting that they may be pathogenic, with reduced penetrance. We have produced an iPS cell line from a single healthy donor's fibroblasts carrying a 15q13.3 CNV, including CHRNA7 in order to study the exact role of this CNV during the neurodevelopment.


Assuntos
Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Adulto , Células Cultivadas , Corpos Embrioides/citologia , Feminino , Humanos , Cariótipo , Reação em Cadeia da Polimerase em Tempo Real
8.
Stem Cell Res ; 28: 153-156, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29494847

RESUMO

Smith-Magenis syndrome (SMS) is a complex genetic disorder characterized by developmental delay, behavioural problems and circadian rhythm dysregulation. About 90% of SMS cases are due to a 17p11.2 deletion containing retinoic acid induced1 (RAI1) gene, 10% are due to heterozygous mutations affecting RAI1 coding region. Little is known about RAI1 role.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação/genética , Síndrome de Smith-Magenis/genética , Fatores de Transcrição/genética , Adulto , Animais , Sequência de Bases , Diferenciação Celular , Corpos Embrioides/citologia , Feminino , Humanos , Camundongos , Teratoma/patologia , Transativadores
9.
Stem Cell Res ; 27: 74-77, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29334628

RESUMO

Joubert Syndrome (JS) is a rare autosomal recessive or X-linked condition characterized by a peculiar cerebellar malformation, known as the molar tooth sign (MTS), associated with other neurological phenotypes and multiorgan involvement. JS is a ciliopathy, a spectrum of disorders whose causative genes encode proteins involved in the primary cilium apparatus. In order to elucidate ciliopathy-associated molecular mechanisms, human induced pluripotent stem cells (hiPSCs) were derived from a patient affected by JS carrying a homozygous missense mutation in the AHI1 gene (p.H896R) that encodes a protein named Jouberin.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Cerebelo/anormalidades , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Mutação/genética , Retina/anormalidades , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular , Células Cultivadas , Cerebelo/metabolismo , Fibroblastos/patologia , Homozigoto , Humanos , Cariótipo , Mutação de Sentido Incorreto/genética , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA