Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 974526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406401

RESUMO

Benzoin resin, produced by the native Indonesian trees Styrax sumatrana and Styrax benzoin, has been incorporated into medical practices to treat wounds, erythema, and many other conditions for centuries. Endophytic fungi that reside within medicinal plants have antimicrobial, antioxidant, and α-glucosidase inhibitory capacities, contributing to plant health and derivative products. In this study, we determined the antifungal, antioxidant, and α-glucosidase inhibitory capacities of endophytic fungal isolates from three different tissues (leaves, bark, and stems) of S. sumatrana and S. benzoin trees. The genera of fungal isolates were determined by phylogenetic analysis of internal transcribed spacer sequences. A total of 58 fungal isolates were classified into 15 different fungal genera from eight taxonomic orders-Hypocreales, Botryosphaeriales, Glomerellales, Diaphortales, Pleosporales, Eurotiales, Xylariales, and Mucorales-with a pattern of host species specificity. Among these isolates, Trichoderma sp. 6407 consistently exhibited high inhibition of the growth of plant pathogens Fusarium sp., Trichoderma viride, and Aspergillus niger. With respect to antioxidant activity, Phyllosticta sp. 6454 consistently showed 2,2-diphenyl-1-picrylhydrazyl inhibition (37.59 ± 0.05%), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)-based antioxidant activity (25.04 ± 0.27 mgTE/g), and α-glucosidase inhibitory activity (52.15 ± 10.08%). Neopestalotiopsis sp. 6431 was notably potent in 2,2-diphenyl-1-picrylhydrazyl inhibition (49.65 ± 0.80%), ferric reducing antioxidant power-based antioxidant activity (197.49 ± 8.65 mgTE/g), and α-glucosidase inhibitory activity (52.88 ± 4.93%). This study revealed that Trichoderma sp. 6407, Phyllosticta sp. 6454, and Neopestalotiopsis sp. 6431 exhibited antifungal, antioxidant, and α-glucosidase inhibitory activities.

2.
Heliyon ; 7(4): e06725, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33948505

RESUMO

Agarwood forms in the heartwood of trees in the family Thymelaeaceae in response to wounding, infection, or other stresses. Its formation is random and takes decades in natural populations, which are harvested for their aromatic compounds. This harvest has led to declining population, and many agarwood producing trees are considered endangered. Therefore, an alternative source would be desirable. We established an in vitro shoot culture method for one agarwood species, Aquillaria malaccensis. Agarwood production was elicited by introducing methyl jasmonate (MeJA) and crude extracts of Fusarium solani into the liquid culture medium. A high concentration of MeJA resulted in necrotic shoot tissue, while application of the crude extracts had no effect on growth of the shoots. Interestingly, gas chromatography-mass spectrometry (GC-MS) analysis of MeJA-treated shoots revealed the presence of several agarwood compounds, including sesquiterpenes and chromone derivative. In addition, GC-MS analysis of shoot-treated with the extracts revealed the presence of alkanes, aromatic compounds, and fatty acid derivatives. It may be that different elicitors induce the production of different compounds in A. malaccensis in vitro shoot cultures and could be used to manipulate the accumulation of different products in culture.

3.
Arch Microbiol ; 203(5): 2411-2418, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661315

RESUMO

Endophytic fungi (EPF) colonize plant roots and enhance their growth. The relationship between host plant and EPF can be affected by several factors, such as growth media, host species, and fungal species. The objective of this study was to clarify the effect of nutrient concentration in growth media on the relationship between host plant and root EPF. Brassica campestris was grown in 1/100 Murashige and Skoog (MS), 1/10 MS, 1/100 MS and 1/10 nitrogen (high N), and 1/100 MS and 1/10 phosphorus (high P) media. B. campestris was inoculated with four root EPFs isolated from forest soils in Indonesia and harvested 28 days after transplant. Shoot dry weight (SDW) and colonization in roots were measured. All the isolates colonized roots of B. campestris. Two isolates increased the SDW of B. campestris grown on 1/100 MS media. The shoot growth response of B. campestris to EPF colonization on 1/100 MS was higher than that on 1/100 high N and 1/100 high P MS media. These results suggest that concentration of nitrogen and phosphorus in growth media determine the relationship between B. campestris and root EPF.


Assuntos
Brassica/crescimento & desenvolvimento , Endófitos/fisiologia , Fungos/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Interações entre Hospedeiro e Microrganismos , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo
4.
Environ Sci Pollut Res Int ; 27(4): 4460-4467, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832957

RESUMO

Oil extraction is one of the causes of soil contamination with the total petroleum hydrocarbons. The objective of this study was to clarify the effect of Asteraceae plants on the degradation of petroleum hydrocarbon in contaminated soil. Initial soils with 40 and 90 g kg-1 of total petroleum hydrocarbon (TPH) were prepared. There were three treatments: (1) no addition, (2) addition of FeCl3 and nitrilotriacetic acid (NTA) solution, and (3) addition of FeCl3 + NTA and the cultivation of nine Asteraceae plants. The concentration of TPH was measured using infrared spectrophotometer, 2 and 3 months after transplanting (MAT). Shoot and root dry weights were measured 3 MAT. The concentration of TPH in soil cultivated with Cosmos caudatus was lower than that of the initial soil (40 g kg-1 TPH), 2 MAT. The concentrations of TPH in soils cultivated with Calendula officinalis, Callistephus chinensis, C. caudatus, and Tagetes sp. were also lower than that in the initial soil, 3 MAT. The concentrations of TPH in soils cultivated with Achillea filipendulina, Anthemis tinctoria, Tagetes erecta, Chrysanthemum coronarium, C. officinalis, C. chinensis, and C. caudatus were lower than that in the initial soil (90 g kg-1 TPH), 2 MAT. The concentrations of TPH in soils cultivated with T. erecta, A. tinctoria, Zinnia elegans, C. chinensis, C. caudatus, and Tagetes sp. were lower than that in the initial soil, 3 MAT. A. filipendulina and C. coronarium died at both 40 and 90 kg-1 TPH soils. These results suggest that the roots of Asteraceae plants degrade petroleum hydrocarbon in contaminated soil and C. chinensis and Z. elegans are more suitable for using TPH remediation. Plant survival and extensive root system are important factors for the remediation of TPH in contaminated soil.


Assuntos
Aster/química , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos/química , Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/química
5.
PLoS One ; 14(9): e0221998, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498844

RESUMO

In Southeast Asia, primary tropical rainforests are usually dominated by ectomycorrhizal (ECM) trees belonging to Dipterocarpaceae, although arbuscular mycorrhizal trees often outcompete them after disturbances such as forest fires and clear-cutting, thus preventing dipterocarp regeneration. In some secondary tropical forests, however, potentially ECM trees belonging to Tristaniopsis (Myrtaceae) become dominant and may help ECM dipterocarp forests to recover. However, we have no information about their mycorrhizal status in these settings. In this study, we analyzed ECM fungal communities in tropical secondary forests dominated by Tristaniopsis and investigated which ECM fungal species are shared with other tropical or temperate areas. In total, 100 samples were collected from four secondary forests dominated by Tristaniopsis on Bangka Island. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM and host species. Based on a >97% ITS sequence similarity threshold, we identified 56 ECM fungal species dominated by Thelephoraceae, Russulaceae, and Clavulinaceae. Some of the ECM fungal species were shared between dominant Tristaniopsis and coexisting Eucalyptus or Quercus trees, including 5 common to ECM fungi recorded in a primary mixed dipterocarp forest at Lambir Hill, Malaysia. In contrast, no ECM fungal species were shared with other geographical regions, even with Tristaniopsis in New Caledonia. These results imply that secondary tropical forests dominated by Tristaniopsis harbor diverse ECM fungi, including those that inhabit primary dipterocarp forests in the same geographical region. They may function as refugia for ECM fungi, given that dipterocarp forests are disappearing quickly due to human activity.


Assuntos
Florestas , Ilhas , Micorrizas/isolamento & purificação , Myrtaceae/microbiologia , Clima Tropical , Indonésia , Micorrizas/fisiologia , Árvores
6.
Trop Life Sci Res ; 29(2): 13-28, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30112138

RESUMO

Indonesia is home to several tree taxa that are harvested for agarwood. This highly valuable oleoresin ironically was the cause for some species to become vulnerable due to gluttonous human activity. However, information on the genetic diversity of these endangered trees is limited. In this study, 28 specimens representing eight species from two genera, Aquilaria and Gyrinops, were collected from ex-situ and in-situ populations in Indonesia. Phylogenetic analysis conducted on DNA sequences of the nuclear ribosomal internal transcribed spacer (ITS) and the trnL-trnF intergenic spacer regions, revealed that Aquilaria and Gyrinops are paraphyletic when Aquilaria cumingiana is excluded. The phylogenetic analysis for ITS and trnL-trnF showed capability to categorise agarwood-producing species based on their regions: East Indonesia and West Indonesia, using Wallace's Line as the divider. In addition, we discuss challenges in species identification and taxonomy of agarwood-producing genera, and their conservation efforts in Indonesia.

7.
Mycorrhiza ; 16(7): 459-464, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16758200

RESUMO

Nontimber forest products (NTFPs) represent an important source of income to millions of people in tropical forest regions, but some NTFP species have decreased in number and become endangered due to overexploitation. There is increasing concern that the planting stocks of Dyera polyphylla and Aquilaria filaria are not sufficient to sustain the yield of NTFPs and promote forest conservation. The objective of this study was to determine the effect of two arbuscular mycorrhizal (AM) fungi, Glomus clarum and Gigaspora decipiens, on the early growth of two NTFP species, D. polyphylla and A. filaria, under greenhouse conditions. The seedlings of both species were inoculated with G. clarum or G. decipiens, or uninoculated (control) under greenhouse conditions. Percentage of AM colonization, plant growth, survival rate, and nitrogen (N) and phosphorus (P) concentrations were measured after 180 days of growth. The percentage of AM colonization of D. polyphylla and A. filaria ranged from 87 to 93% and from 22 to 39%, respectively. Colonization by G. clarum and G. decipiens increased plant height, diameter, and shoot and root dry weights. Shoot N and P concentrations of the seedlings were increased by AM colonization by as much as 70-153% and 135-360%, respectively. Survival rates were higher in the AM-colonized seedlings at 180 days after transplantation than in the control seedlings. The results suggest that AM fungi can accelerate the establishment of the planting stocks of D. polyphylla and A. filaria, thereby promoting their conservation ecologically and sustaining the production of these NTFPs economically.


Assuntos
Apocynaceae/crescimento & desenvolvimento , Apocynaceae/microbiologia , Micorrizas/fisiologia , Thymelaeaceae/crescimento & desenvolvimento , Thymelaeaceae/microbiologia , Ambiente Controlado , Raízes de Plantas/microbiologia , Brotos de Planta/metabolismo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA