Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Genet ; 982019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31544799

RESUMO

Advanced marker technologies are widely used for evaluation of genetic diversity in cultivated crops, wild ancestors, landraces or any special plant genotypes. Developing agricultural cultivars requires the following steps: (i) determining desired characteristics to be improved, (ii) screening genetic resources to help find a superior cultivar, (iii) intercrossing selected individuals, (iv) generating genetically hybrid populations and screening them for agro-morphological or molecular traits, (v) evaluating the superior cultivar candidates, (vi) testing field performance at different locations, and (vii) certifying. In the cultivar development process valuable genes can be identified by creating special biparental or multiparental populations and analysing their association using suitable markers in given populations. These special populations and advanced marker technologies give us a deeper knowledge about the inherited agronomic characteristics. Unaffected by the changing environmental conditions, these provide a higher understanding of genome dynamics in plants. The last decade witnessed new applications for advanced molecular techniques in the area of breeding,with low costs per sample. These, especially, include next-generation sequencing technologies like reduced representation genome sequencing (genotyping by sequencing, restriction site-associated DNA). These enabled researchers to develop new markers, such as simple sequence repeat and single- nucleotide polymorphism, for expanding the qualitative and quantitative information onpopulation dynamics. Thus, the knowledge acquired from novel technologies is a valuable asset for the breeding process and to better understand the population dynamics, their properties, and analysis methods.


Assuntos
Produtos Agrícolas/genética , Melhoramento Vegetal/métodos , Variação Biológica da População/genética , Mapeamento Cromossômico/métodos , Produtos Agrícolas/história , Cruzamentos Genéticos , Genômica/métodos , Genótipo , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , História do Século XVIII , História Antiga , Repetições de Microssatélites/genética , Fenótipo , Melhoramento Vegetal/economia , Melhoramento Vegetal/história , Polimorfismo de Nucleotídeo Único
2.
3 Biotech ; 9(6): 210, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31093480

RESUMO

Genetic polymorphism amid plant species is a crucial factor for plant improvement and maintaining their biodiversity. Evaluation of genetic diversity amongst plant species is significant to deal with the environmental stress conditions and their effective involvement in the breeding programs. Hence, in present study, an attempt has been made towards the genetic assessment of individual and bulked populations of 25 watermelon genotypes, belonging to Citroides (citron watermelon) and Lanatus (dessert watermelon) group from Konya, Thrace, Turkmenistan, Saudi Arabia and Turkey. The employed Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Polymorphism (ISSR) marker systems provided 69.4 and 95.4% polymorphisms, respectively. Different clustering methods showed clear grouping of the genotypes based on the geographical origin and species. Citron genotypes from Turkmenistan stood apart from all the Turkish Lanatus genotypes. However, Saudi Arab Lanatus genotype grouped with native Turkish varieties indicating the genetic linkage. Among all the Turkmenistan Citron genotypes, Turkmenistan-11 was the most distinct form. Moreover, sufficient genetic variation was found between the commercial and native Lanatus genotypes of Turkey as well as Citron genotypes of Turkmenistan. Hence, it will be beneficial to include these genotypes in the future breeding programs to transfer disease-resistant alleles from Citron to Lanatus genotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA