Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Chem Soc ; 146(22): 14972-14988, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787738

RESUMO

Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.


Assuntos
Caspase 2 , Inibidores de Caspase , Proteômica , Humanos , Caspase 2/metabolismo , Caspase 2/química , Proteômica/métodos , Inibidores de Caspase/farmacologia , Inibidores de Caspase/química , Inibidores de Caspase/metabolismo , Estrutura Molecular , Cisteína Endopeptidases
2.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014036

RESUMO

Protein homeostasis is tightly regulated, with damaged or misfolded proteins quickly eliminated by the proteasome and autophagosome pathways. By co-opting these processes, targeted protein degradation technologies enable pharmacological manipulation of protein abundance. Recently, cysteine-reactive molecules have been added to the degrader toolbox, which offer the benefit of unlocking the therapeutic potential of 'undruggable' protein targets. The proteome-wide impact of these molecules remains to be fully understood and given the general reactivity of many classes of cysteine-reactive electrophiles, on- and off-target effects are likely. Using chemical proteomics, we identified a cysteine-reactive small molecule degrader of the SARS-CoV-2 nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host chaperones together with activation of global cell stress response pathways. We find that cysteine-reactive electrophiles increase global protein ubiquitylation, trigger proteasome activation, and result in widespread aggregation and depletion of host proteins, including components of the nuclear pore complex. Formation of stress granules was also found to be a remarkably ubiquitous cellular response to nearly all cysteine-reactive compounds and degraders. Collectively, our study sheds light on complexities of covalent target protein degradation and highlights untapped opportunities in manipulating and characterizing proteostasis processes via deciphering the cysteine-centric regulation of stress response pathways.

3.
Cell Chem Biol ; 30(7): 811-827.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37419112

RESUMO

Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.


Assuntos
Cisteína , Proteômica , Animais , Camundongos , Cisteína/metabolismo , Proteômica/métodos , Mitocôndrias/metabolismo , Proteoma/metabolismo , Oxirredução
4.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36711448

RESUMO

Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxiCat, Biotin Switch, and SP3-Rox, they typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. To obviate requirements for laborious biochemical fractionation, here, we develop and apply an unprecedented two step cysteine capture method to establish the Local Cysteine Capture (Cys-LoC), and Local Cysteine Oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole cell proteomic analysis. Application of the Cys-LOx method to LPS stimulated murine immortalized bone marrow-derived macrophages (iBMDM), revealed previously unidentified mitochondria-specific inflammation-induced cysteine oxidative modifications including those associated with oxidative phosphorylation. These findings shed light on post-translational mechanisms regulating mitochondrial function during the cellular innate immune response.

5.
ACS Chem Biol ; 16(8): 1354-1364, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34251165

RESUMO

Cordyheptapeptide A is a lipophilic cyclic peptide from the prized Cordyceps fungal genus that shows potent cytotoxicity in multiple cancer cell lines. To better understand the bioactivity and physicochemical properties of cordyheptapeptide A with the ultimate goal of identifying its cellular target, we developed a solid-phase synthesis of this multiply N-methylated cyclic heptapeptide which enabled rapid access to both side chain- and backbone-modified derivatives. Removal of one of the backbone amide N-methyl (N-Me) groups maintained bioactivity, while membrane permeability was also preserved due to the formation of a new intramolecular hydrogen bond in a low dielectric solvent. Based on its cytotoxicity profile in the NCI-60 cell line panel, as well as its phenotype in a microscopy-based cytological assay, we hypothesized that cordyheptapeptide was acting on cells as a protein synthesis inhibitor. Further studies revealed the molecular target of cordyheptapeptide A to be the eukaryotic translation elongation factor 1A (eEF1A), a target shared by other lipophilic cyclic peptide natural products. This work offers a strategy to study and improve cyclic peptide natural products while highlighting the ability of these lipophilic compounds to effectively inhibit intracellular disease targets.


Assuntos
Antineoplásicos/farmacologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/síntese química , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade
6.
Angew Chem Int Ed Engl ; 59(48): 21571-21577, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32789999

RESUMO

Large macrocyclic peptides can achieve surprisingly high membrane permeability, although the properties that govern permeability in this chemical space are only beginning to come into focus. We generated two libraries of cyclic decapeptides with stable cross-ß conformations, and found that peptoid substitutions within the ß-turns of the macrocycle preserved the rigidity of the parent scaffold, whereas peptoid substitutions in the opposing ß-strands led to "chameleonic" species that were rigid in nonpolar media but highly flexible in water. Both rigid and chameleonic compounds showed high permeability over a wide lipophilicity range, with peak permeabilities differing significantly depending on scaffold rigidity. Our findings indicate that modulating lipophilicity can be used to engineer favorable ADME properties into both rigid and flexible macrocyclic peptides, and that scaffold rigidity can be used to tune optimal lipophilicity.


Assuntos
Compostos Macrocíclicos/química , Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Compostos Macrocíclicos/síntese química , Estrutura Molecular , Peso Molecular , Peptídeos/síntese química
7.
J Med Chem ; 61(24): 11169-11182, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30395703

RESUMO

As drug discovery moves increasingly toward previously "undruggable" targets such as protein-protein interactions, lead compounds are becoming larger and more lipophilic. Although increasing lipophilicity can improve membrane permeability, it can also incur serious liabilities, including poor water solubility, increased toxicity, and faster metabolic clearance. Here we introduce a new efficiency metric, especially relevant to "beyond rule of 5" molecules, that captures, in a simple, unitless value, these opposing effects of lipophilicity on molecular properties. Lipophilic permeability efficiency (LPE) is defined as log D7.4dec/w - mlipocLogP + bscaffold, where log D7.4dec/w is the experimental decadiene-water distribution coefficient (pH 7.4), cLogP is the calculated octanol-water partition coefficient, and mlipo and bscaffold are scaling factors to standardize LPE values across different cLogP metrics and scaffolds. Using a variety of peptidic and nonpeptidic macrocycle drugs, we show that LPE provides a functional assessment of the efficiency with which a compound achieves passive membrane permeability at a given lipophilicity.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Preparações Farmacêuticas/química , Relação Estrutura-Atividade , 1-Octanol/química , Ciclosporinas/química , Ciclosporinas/farmacocinética , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA