Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Neurol ; 21(7): 632-644, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716693

RESUMO

The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments. We used a formal consensus method that involved representatives from academia, industry, and non-profit organisations. The HD-ISS characterises individuals for research purposes from birth, starting at Stage 0 (ie, individuals with the Huntington's disease genetic mutation without any detectable pathological change) by using a genetic definition of Huntington's disease. Huntington's disease progression is then marked by measurable indicators of underlying pathophysiology (Stage 1), a detectable clinical phenotype (Stage 2), and then decline in function (Stage 3). Individuals can be precisely classified into stages based on thresholds of stage-specific landmark assessments. We also demonstrated the internal validity of this system. The adoption of the HD-ISS could facilitate the design of clinical trials targeting populations before clinical motor diagnosis and enable data standardisation across ongoing and future studies.


Assuntos
Doença de Huntington , Progressão da Doença , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Estudos Longitudinais , Fenótipo
2.
J Huntingtons Dis ; 11(2): 97-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35466945

RESUMO

Huntington's disease (HD) is a devastating neurodegenerative disorder that urgently needs disease-modifying therapeutics. To this end, collaboration to standardize clinical research practices in the field and drive progress in addressing drug development challenges is paramount. At a meeting in 2017 organized by CHDI Foundation and the Critical Path Institute, stakeholders across the pharmaceutical industry, academia, regulatory agencies, and patient advocacy groups discussed the need for and potential impact of a consortium dedicated to HD regulatory science. Consequently, the Huntington's Disease Regulatory Science Consortium (HD-RSC) was formed, a precompetitive consortium that is dedicated to building a regulatory strategy to expedite the approval of HD therapeutics.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina , Doença de Huntington/tratamento farmacológico
3.
Front Neurol ; 12: 712565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744964

RESUMO

Volumetric magnetic resonance imaging (vMRI) has been widely studied in Huntington's disease (HD) and is commonly used to assess treatment effects on brain atrophy in interventional trials. Global and regional trajectories of brain atrophy in HD, with early involvement of striatal regions, are becoming increasingly understood. However, there remains heterogeneity in the methods used and a lack of widely-accessible multisite, longitudinal, normative datasets in HD. Consensus for standardized practices for data acquisition, analysis, sharing, and reporting will strengthen the interpretation of vMRI results and facilitate their adoption as part of a pathobiological disease staging system. The Huntington's Disease Regulatory Science Consortium (HD-RSC) currently comprises 37 member organizations and is dedicated to building a regulatory science strategy to expedite the approval of HD therapeutics. Here, we propose four recommendations to address vMRI standardization in HD research: (1) a checklist of standardized practices for the use of vMRI in clinical research and for reporting results; (2) targeted research projects to evaluate advanced vMRI methodologies in HD; (3) the definition of standard MRI-based anatomical boundaries for key brain structures in HD, plus the creation of a standard reference dataset to benchmark vMRI data analysis methods; and (4) broad access to raw images and derived data from both observational studies and interventional trials, coded to protect participant identity. In concert, these recommendations will enable a better understanding of disease progression and increase confidence in the use of vMRI for drug development.

4.
Front Neurol ; 12: 712555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621236

RESUMO

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder that is caused by expansion of a CAG-repeat tract in the huntingtin gene and characterized by motor impairment, cognitive decline, and neuropsychiatric disturbances. Neuropathological studies show that disease progression follows a characteristic pattern of brain atrophy, beginning in the basal ganglia structures. The HD Regulatory Science Consortium (HD-RSC) brings together diverse stakeholders in the HD community-biopharmaceutical industry, academia, nonprofit, and patient advocacy organizations-to define and address regulatory needs to accelerate HD therapeutic development. Here, the Biomarker Working Group of the HD-RSC summarizes the cross-sectional evidence indicating that regional brain volumes, as measured by volumetric magnetic resonance imaging, are reduced in HD and are correlated with disease characteristics. We also evaluate the relationship between imaging measures and clinical change, their longitudinal change characteristics, and within-individual longitudinal associations of imaging with disease progression. This analysis will be valuable in assessing pharmacodynamics in clinical trials and supporting clinical outcome assessments to evaluate treatment effects on neurodegeneration.

5.
Ther Innov Regul Sci ; 55(3): 591-600, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33398663

RESUMO

INTRODUCTION: Patient-level data sharing has the potential to significantly impact the lives of patients by optimizing and improving the medical product development process. In the product development setting, successful data sharing is defined as data sharing that is actionable and facilitates decision making during the development and review of medical products. This often occurs through the creation of new product development tools or methodologies, such as novel clinical trial design and enrichment strategies, predictive pre-clinical and clinical models, clinical trial simulation tools, biomarkers, and clinical outcomes assessments, and more. METHODS: To be successful, extensive partnerships must be established between all relevant stakeholders, including industry, academia, research institutes and societies, patient-advocacy groups, and governmental agencies, and a neutral third-party convening organization that can provide a pre-competitive space for data sharing to occur. CONCLUSIONS: Data sharing focused on identified regulatory deliverables that improve the medical product development process encounters significant challenges that are not seen with data sharing aimed at advancing clinical decision making and requires the commitment of all stakeholders. Regulatory data sharing challenges and solutions, as well as multiple examples of previous successful data sharing initiatives are presented and discussed in the context of medical product development.


Assuntos
Órgãos Governamentais , Disseminação de Informação , Coleta de Dados , Humanos
6.
Clin Transl Sci ; 14(1): 214-221, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702147

RESUMO

Interest in drug development for rare diseases has expanded dramatically since the Orphan Drug Act was passed in 1983, with 40% of new drug approvals in 2019 targeting orphan indications. However, limited quantitative understanding of natural history and disease progression hinders progress and increases the risks associated with rare disease drug development. Use of international data standards can assist in data harmonization and enable data exchange, integration into larger datasets, and a quantitative understanding of disease natural history. The US Food and Drug Administration (FDA) requires the use of Clinical Data Interchange Consortium (CDISC) Standards in new drug submissions to help the agency efficiently and effectively receive, process, review, and archive submissions, as well as to help integrate data to answer research questions. Such databases have been at the core of biomarker qualification efforts and fit-for-purpose models endorsed by the regulators. We describe the development of CDISC therapeutic area user guides for Duchenne muscular dystrophy and Huntington's disease through Critical Path Institute consortia. These guides describe formalized data structures and controlled terminology to map and integrate data from different sources. This will result in increased standardization of data collection and allow integration and comparison of data from multiple studies. Integration of multiple data sets enables a quantitative understanding of disease progression, which can help overcome common challenges in clinical trial design in these and other rare diseases. Ultimately, clinical data standardization will lead to a faster path to regulatory approval of urgently needed new therapies for patients.


Assuntos
Desenvolvimento de Medicamentos/normas , Troca de Informação em Saúde/normas , Doença de Huntington/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Doenças Raras/tratamento farmacológico , Pesquisa Biomédica/normas , Bases de Dados Factuais/normas , Aprovação de Drogas , Humanos , Produção de Droga sem Interesse Comercial/normas , Estados Unidos , United States Food and Drug Administration/normas
7.
Sci Adv ; 6(37)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917684

RESUMO

The role of ocean anoxia as a cause of the end-Triassic marine mass extinction is widely debated. Here, we present carbonate-associated sulfate δ34S data from sections spanning the Late Triassic-Early Jurassic transition, which document synchronous large positive excursions on a global scale occurring in ~50 thousand years. Biogeochemical modeling demonstrates that this S isotope perturbation is best explained by a fivefold increase in global pyrite burial, consistent with large-scale development of marine anoxia on the Panthalassa margin and northwest European shelf. This pyrite burial event coincides with the loss of Triassic taxa seen in the studied sections. Modeling results also indicate that the pre-event ocean sulfate concentration was low (<1 millimolar), a common feature of many Phanerozoic deoxygenation events. We propose that sulfate scarcity preconditions oceans for the development of anoxia during rapid warming events by increasing the benthic methane flux and the resulting bottom-water oxygen demand.

8.
J Comp Neurol ; 528(17): 3075-3094, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067231

RESUMO

Considerable evidence supports the premise that the visual system of primates develops hierarchically, with primary visual cortex developing structurally and functionally first, thereby influencing the subsequent development of higher cortical areas. An apparent exception is the higher order middle temporal visual area (MT), which appears to be histologically distinct near the time of birth in marmosets. Here we used a number of histological and immunohistological markers to evaluate the maturation of cortical and subcortical components of the visual system in galagos ranging from newborns to adults. Galagos are representative of the large strepsirrhine branch of primate evolution, and studies of these primates help identify brain features that are broadly similar across primate taxa. The histological results support the view that MT is functional at or near the time of birth, as is primary visual cortex. Likewise, the superior colliculus, dorsal lateral geniculate nucleus, and the posterior nucleus of the pulvinar are well-developed by birth. Thus, these subcortical structures likely provide visual information directly or indirectly to cortex in newborn galagos. We conclude that MT resembles a primary sensory area by developing early, and that the early development of MT may influence the subsequent development of dorsal stream visual areas.


Assuntos
Galagidae/crescimento & desenvolvimento , Pulvinar/crescimento & desenvolvimento , Colículos Superiores/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Fatores Etários , Animais , Corpos Geniculados/citologia , Corpos Geniculados/crescimento & desenvolvimento , Pulvinar/citologia , Colículos Superiores/citologia , Córtex Visual/citologia , Vias Visuais/citologia , Vias Visuais/crescimento & desenvolvimento
9.
Aging Cell ; 17(4): e12775, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29749079

RESUMO

Misfolded and hyperphosphorylated tau accumulates in several neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia with Parkinsonism, corticobasal degeneration, progressive supranuclear palsy, Down syndrome, and Pick's disease. Tau is a microtubule-binding protein, and its role in microtubule stabilization is well defined. In contrast, while growing evidence suggests that tau is also involved in synaptic physiology, a complete assessment of tau function in the adult brain has been hampered by robust developmental compensation of other microtubule-binding proteins in tau knockout mice. To circumvent these developmental compensations and assess the role of tau in the adult brain, we generated an adeno-associated virus (AAV) expressing a doxycycline-inducible short-hairpin (Sh) RNA targeted to tau, herein referred to as AAV-ShRNATau. We performed bilateral stereotaxic injections in 7-month-old C57Bl6/SJL wild-type mice with either the AAV-ShRNATau or a control AAV. We found that acute knockdown of tau in the adult hippocampus significantly impaired motor coordination and spatial memory. Blocking the expression of the AAV-ShRNATau, thereby allowing tau levels to return to control levels, restored motor coordination and spatial memory. Mechanistically, the reduced tau levels were associated with lower BDNF levels, reduced levels of synaptic proteins associated with learning, and decreased spine density. We provide compelling evidence that tau is necessary for motor and cognitive function in the adult brain, thereby firmly supporting that tau loss-of-function may contribute to the clinical manifestations of many tauopathies. These findings have profound clinical implications given that anti-tau therapies are in clinical trials for Alzheimer's disease.


Assuntos
Hipocampo/metabolismo , Deficiências da Aprendizagem/metabolismo , Transtornos da Memória/metabolismo , Proteínas tau/deficiência , Proteínas tau/metabolismo , Animais , Dependovirus/isolamento & purificação , Dependovirus/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas tau/isolamento & purificação
10.
J Comp Neurol ; 525(9): 2109-2132, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188622

RESUMO

The northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus) are members of a diverse clade of carnivorous mammals known as pinnipeds. Pinnipeds are notable for their large, ape-sized brains, yet little is known about their central nervous system. Both the northern elephant seal and California sea lion spend most of their lives at sea, but each also spends time on land to breed and give birth. These unique coastal niches may be reflected in specific evolutionary adaptations to their sensory systems. Here, we report on components of the visual pathway in these two species. We found evidence for two classes of myelinated fibers within the pinniped optic nerve, those with thick myelin sheaths (elephant seal: 9%, sea lion: 7%) and thin myelin sheaths (elephant seal: 91%, sea lion: 93%). In order to investigate the architecture of the lateral geniculate nucleus, superior colliculus, and primary visual cortex, we processed brain sections from seal and sea lion pups for Nissl substance, cytochrome oxidase, and vesicular glutamate transporters. As in other carnivores, the dorsal lateral geniculate nucleus consisted of three main layers, A, A1, and C, while each superior colliculus similarly consisted of seven distinct layers. The sea lion visual cortex is located at the posterior side of cortex between the upper and lower banks of the postlateral sulcus, while the elephant seal visual cortex extends far more anteriorly along the dorsal surface and medial wall. These results are relevant to comparative studies related to the evolution of large brains.


Assuntos
Nervo Óptico/anatomia & histologia , Leões-Marinhos/anatomia & histologia , Focas Verdadeiras/anatomia & histologia , Colículos Superiores/anatomia & histologia , Tálamo/anatomia & histologia , Córtex Visual/anatomia & histologia , Animais , Animais Recém-Nascidos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Masculino , Nervo Óptico/metabolismo , Colículos Superiores/metabolismo , Tálamo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Córtex Visual/metabolismo , Vias Visuais/anatomia & histologia , Vias Visuais/metabolismo
11.
Brain Behav Evol ; 88(1): 1-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547956

RESUMO

According to previous research, cell and neuron densities vary across neocortex in a similar manner across primate taxa. Here, we provide a more extensive examination of this effect in macaque monkeys. We separated neocortex from the underlying white matter in 4 macaque monkey hemispheres (1 Macaca nemestrina, 2 Macaca radiata, and 1 Macaca mulatta), manually flattened the neocortex, and divided it into smaller tissue pieces for analysis. The number of cells and neurons were determined for each piece across the cortical sheet using flow cytometry. Primary visual cortex had the most densely packed neurons and primary motor cortex had the least densely packed neurons. With respect to differences in brain size between cases, there was little variability in the total cell and neuron numbers within specific areas, and overall trends were similar to what has been previously described in Old World baboons and other primates. The average hemispheric total cell number per hemisphere ranged from 2.9 to 3.7 billion, while the average total neuron number ranged from 1.3 to 1.7 billion neurons. The visual cortex neuron densities were predictably higher, ranging from 18.2 to 34.7 million neurons/cm2 in macaques, in comparison to a range of 9.3-17.7 million neurons/cm2 across cortex as a whole. The results support other evidence that neuron surface densities vary across the cortical sheet in a predictable pattern within and across primate taxa.


Assuntos
Macaca/anatomia & histologia , Neocórtex/citologia , Neurônios/citologia , Córtex Visual/citologia , Animais , Contagem de Células , Feminino , Macaca mulatta/anatomia & histologia , Macaca nemestrina/anatomia & histologia , Macaca radiata/anatomia & histologia , Masculino , Córtex Motor/citologia , Neuroglia/citologia , Especificidade da Espécie
12.
J Comp Neurol ; 524(9): 1957-75, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26878587

RESUMO

Pinnipeds (sea lions, seals, and walruses) are notable for many reasons, including their ape-sized brains, their adaptation to a coastal niche that combines mastery of the sea with strong ties to land, and the remarkable abilities of their trigeminal whisker system. However, little is known about the central nervous system of pinnipeds. Here we report on the somatosensory areas of the nervous system of the California sea lion (Zalophus californianus). Using stains for Nissl, cytochrome oxidase, and vesicular glutamate transporters, we investigated the primary somatosensory areas in the brainstem, thalamus, and cortex in one sea lion pup and the external anatomy of the brain in a second pup. We find that the sea lion's impressive array of whiskers is matched by a large trigeminal representation in the brainstem with well-defined parcellation that resembles the barrelettes found in rodents but scaled upward in size. The dorsal column nuclei are large and distinct. The ventral posterior nucleus of the thalamus has divisions, with a large area for the presumptive head representation. Primary somatosensory cortex is located in the neocortex just anterior to the main vertical fissure, and precisely locating it as we do here is useful for comparing the highly gyrified pinniped cortex with that of other carnivores. To our knowledge this work is the first comprehensive report on the central nervous system areas for any sensory system in a pinniped. The results may be useful both in the veterinary setting and for comparative studies related to brain evolution.


Assuntos
Vias Aferentes/fisiologia , Tronco Encefálico/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Leões-Marinhos/anatomia & histologia , Tálamo/anatomia & histologia , Vibrissas , Animais , Animais Recém-Nascidos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Medula Espinal/anatomia & histologia , Medula Espinal/metabolismo , Nervo Trigêmeo/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(3): 740-5, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729880

RESUMO

The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.


Assuntos
Neocórtex/citologia , Neurônios/citologia , Pan troglodytes/fisiologia , Envelhecimento , Animais , Contagem de Células , Feminino , Córtex Motor/citologia , Córtex Somatossensorial/citologia , Córtex Visual/citologia
14.
Reproduction ; 141(6): 821-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21393340

RESUMO

Macrophages are the most abundant immune cell within the ovary. Their dynamic distribution throughout the ovarian cycle and heterogenic array of functions suggest the involvement in various ovarian processes, but their functional role has yet to be fully established. The aim was to induce conditional macrophage ablation to elucidate the putative role of macrophages in maintaining the integrity of ovarian vasculature. Using the CD11b-diphtheria toxin receptor (DTR) mouse, in which expression of human DTR is under the control of the macrophage-specific promoter sequence CD11b, ovarian macrophages were specifically ablated in adult females by injections of diphtheria toxin (DT). CD11b-DTR mice were given DT treatment or vehicle and ovaries collected at 2, 8, 16, 24 and 48  h. Histochemical stains were employed to characterise morphological changes, immunohistochemistry for F4/80 to identify macrophages and the endothelial cell marker CD31 used to quantify vascular changes. In normal ovaries, macrophages were detected in corpora lutea and in the theca layer of healthy and atretic follicles. As macrophage ablation progressed, increasing amounts of ovarian haemorrhage were observed affecting both luteal and thecal tissue associated with significant endothelial cell depletion, increased erythrocyte accumulation and increased follicular atresia by 16  h. These events were followed by necrosis and profound structural damage. Changes were limited to the ovary, as DT treatment does not disrupt the vasculature of other tissues likely reflecting the unique cyclical nature of the ovarian vasculature and heterogeneity between macrophages within different tissues. These results show that macrophages play a critical role in maintaining ovarian vascular integrity.


Assuntos
Técnicas de Ablação , Macrófagos/patologia , Microvasos/patologia , Ovário/irrigação sanguínea , Análise de Variância , Animais , Antígenos de Diferenciação/análise , Biomarcadores/análise , Antígeno CD11b/genética , Distribuição de Qui-Quadrado , Toxina Diftérica/administração & dosagem , Células Endoteliais/patologia , Feminino , Citometria de Fluxo , Hemorragia/patologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Imuno-Histoquímica , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Microvasos/imunologia , Necrose , Folículo Ovariano/patologia , Ovário/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Regiões Promotoras Genéticas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA