Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 71(40): 1271-1277, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201399

RESUMO

Knowledge about monkeypox transmission risk in congregate settings is limited. In July 2022, the Chicago Department of Public Health (CDPH) confirmed a case of monkeypox in a person detained in Cook County Jail (CCJ) in Chicago, Illinois. This case was the first identified in a correctional setting in the United States and reported to CDC during the 2022 multinational monkeypox outbreak. CDPH collaborated with CCJ, the Illinois Department of Public Health (IDPH), and CDC to evaluate transmission risk within the facility. Fifty-seven residents were classified as having intermediate-risk exposures to the patient with monkeypox during the 7-day interval between the patient's symptom onset and his isolation. (Intermediate-risk exposure was defined as potentially being within 6 ft of the patient with monkeypox for a total of ≥3 hours cumulatively, without wearing a surgical mask or respirator, or potentially having contact between their own intact skin or clothing and the skin lesions or body fluids from the patient or with materials that were in contact with the patient's skin lesions or body fluids.) No secondary cases were identified among a subset of 62% of these potentially exposed residents who received symptom monitoring, serologic testing, or both. Thirteen residents accepted postexposure prophylaxis (PEP), with higher acceptance among those who were offered counseling individually or in small groups than among those who were offered PEP together in a large group. Monkeypox virus (MPXV) DNA, but no viable virus, was detected on one surface in a dormitory where the patient had been housed with other residents before he was isolated. Although monkeypox transmission might be limited in similar congregate settings in the absence of higher-risk exposures, congregate facilities should maintain recommended infection control practices in response to monkeypox cases, including placing the person with monkeypox in medical isolation and promptly and thoroughly cleaning and disinfecting spaces where the person has spent time. In addition, officials should provide information to residents and staff members about monkeypox symptoms and transmission modes, facilitate confidential monkeypox risk and symptom disclosure and prompt medical evaluation for symptoms that are reported, and provide PEP counseling in a private setting.


Assuntos
Mpox , Chicago/epidemiologia , DNA , Humanos , Illinois/epidemiologia , Prisões Locais , Masculino , Mpox/diagnóstico , Mpox/epidemiologia , Estados Unidos
2.
Front Plant Sci ; 13: 965397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247546

RESUMO

Highbush blueberry (Vaccinium corymbosum, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.

3.
J Exp Bot ; 73(5): 1344-1356, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34664645

RESUMO

Members of the Vaccinium genus bear fruits rich in anthocyanins, a class of red-purple flavonoid pigments that provide human health benefits, although the localization and concentrations of anthocyanins differ between species: blueberry (V. corymbosum) has white flesh, while bilberry (V. myrtillus) has red flesh. Comparative transcriptomics between blueberry and bilberry revealed that MYBPA1.1 and MYBA1 strongly correlated with the presence of anthocyanins, but were absent or weakly expressed in blueberry flesh. MYBPA1.1 had a biphasic expression profile, correlating with both proanthocyanidin biosynthesis early during fruit development and anthocyanin biosynthesis during berry ripening. MYBPA1.1 was unable to induce anthocyanin or proanthocyanidin accumulation in Nicotiana benthamiana, but activated promoters of flavonoid biosynthesis genes. The MYBPA1.1 promoter is directly activated by MYBA1 and MYBPA2 proteins, which regulate anthocyanins and proanthocyanidins, respectively. Our findings suggest that the lack of VcMYBA1 expression in blueberry flesh results in an absence of VcMYBPA1.1 expression, which are both required for anthocyanin regulation. In contrast, VmMYBA1 is well expressed in bilberry flesh, up-regulating VmMYBPA1.1, allowing coordinated regulation of flavonoid biosynthesis genes and anthocyanin accumulation. The hierarchal model described here for Vaccinium may also occur in a wider group of plants as a means to co-regulate different branches of the flavonoid pathway.


Assuntos
Proantocianidinas , Vaccinium , Antocianinas/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Vaccinium/genética , Vaccinium/metabolismo
4.
Front Plant Sci ; 11: 545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477384

RESUMO

Blueberries are distinguished by their purple-blue fruit color, which develops during ripening and is derived from a characteristic composition of flavonoid-derived anthocyanin pigments. The production of anthocyanins is confined to fruit skin, leaving the colorless fruit flesh devoid of these compounds. By linking accumulation patterns of phenolic metabolites with gene transcription in Northern Highbush (Vaccinium corymbosum) and Rabbiteye (Vaccinium virgatum) blueberry, we investigated factors limiting anthocyanin production in berry flesh. We find that flavonoid production was generally lower in fruit flesh compared with skin and concentrations further declined during maturation. A common set of structural genes was identified across both species, indicating that tissue-specific flavonoid biosynthesis was dependent on co-expression of multiple pathway genes and limited by the phenylpropanoid pathway in combination with CHS, F3H, and ANS as potential pathway bottlenecks. While metabolite concentrations were comparable between the blueberry genotypes when fully ripe, the anthocyanin composition was distinct and depended on the degree of hydroxylation/methoxylation of the anthocyanidin moiety in combination with genotype-specific glycosylation patterns. Co-correlation analysis of phenolic metabolites with pathway structural genes revealed characteristic isoforms of O-methyltransferases and UDP-glucose:flavonoid-3-O-glycosyltransferase that were likely to modulate anthocyanin composition. Finally, we identified candidate transcriptional regulators that were co-expressed with structural genes, including the activators MYBA, MYBPA1, and bHLH2 together with the repressor MYBC2, which suggested an interdependent role in anthocyanin regulation.

5.
Front Plant Sci ; 9: 1300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254656

RESUMO

The Vaccinium genus in the family Ericaceae comprises many species, including the fruit-bearing blueberry, bilberry, cranberry, huckleberry, and lingonberry. Commercially, the most important are the blueberries (Vaccinium section Cyanococcus), such as Vaccinium corymbosum (northern highbush blueberry), Vaccinium virgatum (rabbiteye blueberry), and Vaccinium angustifolium (lowbush blueberry). The rising popularity of blueberries can partly be attributed to their "superfood" status, with an increasing body of evidence around human health benefits resulting from the fruit metabolites, particularly products of the phenylpropanoid pathway such as anthocyanins. Activation of anthocyanin production by R2R3-MYB transcription factors (TFs) has been characterized in many species, but despite recent studies on blueberry, cranberry, and bilberry, no MYB anthocyanin regulators have been reported for Vaccinium. Indeed, there has been conjecture that at least in bilberry, MYB TFs divergent to the usual type are involved. We report identification of MYBA from blueberry, and show through sequence analysis and functional studies that it is homologous to known anthocyanin-promoting R2R3-MYBs of subgroup 6 of the MYB superfamily. In transient assays, MYBA complemented an anthocyanin MYB mutant of Antirrhinum majus and, together with a heterologous bHLH anthocyanin regulator, activated anthocyanin production in Nicotiana benthamiana. Furthermore anthocyanin accumulation and anthocyanin structural gene expression (assayed by qPCR and RNA-seq analyses) correlated with MYBA expression, and MYBA was able to transactivate the DFR promoter from blueberry and other species. The RNA-seq data also revealed a range of other candidate genes involved in the regulation of anthocyanin production in blueberry fruit. The identification of MYBA will help to resolve the regulatory mechanism for anthocyanin pigmentation in the Vaccinium genus. The sequence information should also prove useful in developing tools for the accelerated breeding of new Vaccinium cultivars.

6.
J Exp Bot ; 54(389): 1813-20, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12815030

RESUMO

Constitutive over-expression of a maize sucrose-phosphate synthase (SPS) gene in tobacco (Nicotiana tabacum) had major effects on leaf carbohydrate budgets with consequences for whole plant development. Transgenic tobacco plants flowered earlier and had greater flower numbers than wild-type plants. These changes were not linked to modified source leaf carbon assimilation or carbon export, although sucrose to starch ratios were significantly higher in leaves expressing the transgene. The youngest and oldest leaves of plants over-expressing SPS had up to 10-fold wild-type maximal extractable SPS activity, but source leaf SPS activities were only 2-3 times greater in these lines than in the wild type. In the oldest leaves, where the expression of the transgene led to the most marked enhancement in SPS activity, photosynthesis was also increased. It was concluded that these increases in the capacity for sucrose synthesis and carbon assimilation, particularly in older leaves, accelerate the whole plant development and increase the abundance of flowers without substantial changes in the overall shoot biomass.


Assuntos
Glucosiltransferases/metabolismo , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento , Fotossíntese , Folhas de Planta/metabolismo , Envelhecimento , Carboidratos/análise , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Nicotiana/genética , Zea mays/genética
7.
Plant Biotechnol J ; 1(2): 101-12, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17147747

RESUMO

A recent strategy for pest control in plants has involved transformation with genes encoding cysteine proteinase inhibitors (cystatins). Little is known, however, about the effects of constitutive cystatin expression on whole plant physiology. The present study using oryzacystatin I (OC-I) expression in transformed tobacco was designed to resolve this issue and also to test the effects on abiotic stress tolerance. All transformed plants expressing OC-I showed a conditional phenotype. A marked effect on stem elongation was observed in plants grown under low light intensities. After 7 weeks of growth at low light, the plants expressing OC-I were smaller with fewer expanded leaves and a slightly lower total biomass than empty vector controls or wild type plants. Maximal rates of photosynthesis (A(max)) were also decreased, the inhibitory effect being greatest in the plants with highest OC-I expression. After 12 weeks of growth at low light, however, the plants expressing OC-I performed better in terms of shoot biomass production, which was nearly double that of the empty vector or wild type controls. All plants showed similar responses to drought, however photosynthesis was better protected against chilling injury in plants constitutively expressing OC-I. Photosynthetic CO(2) assimilation was decreased in all plants following exposure to 5 degrees C, but the inhibition was significantly less in the OC-I expressing plants than in controls. The transformed tobacco plants expressing OC-I therefore show a phenotype-environment interaction with important implications for biotechnological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA