Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3074-3081, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412556

RESUMO

Coupling effects of localized surface plasmon resonance (LSPR) represent an efficient means to tune the plasmonic modes and to enhance the near-field. While LSPR coupling in metal nanoparticles has been extensively explored, limited attention has been given to heavily doped semiconductor nanocrystals. Here, we investigate the LSPR coupling behavior of Cs-doped tungsten oxide (CsxWO3-δ) nanocrystal platelets as they undergo an oriented assembly into parallel stacks. The oriented assembly was achieved by lowering the dispersion stability of the colloidal nanoplatelets, of which the basal surface was selectively ligand-functionalized. This assembly induces simultaneous blue-shifts and red-shifts of dual-mode LSPR peaks without compromising the intensity and quality factor. This stands in contrast to the significant damping, broadening, and overall red-shift of the LSPR observed in random assemblies. Computational simulations successfully replicate the experimental observations, affirming the potential of this coupling phenomenon of near-infrared dual-mode LSPR in diverse applications including solar energy, bio-optics, imaging, and telecommunications.

2.
iScience ; 24(6): 102694, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34195570

RESUMO

Topological insulators (TIs) are bulk insulators with metallic surface states that can be described by a single Dirac cone. However, low-dimensional solids such as nanowires (NWs) are a challenge, due to the difficulty of separating surface contributions from bulk carriers. Fabrication of NWs with high surface-to-volume ratio can be realized by different methods such as chemical vapor transport, molecular beam epitaxy, and electrodeposition. The last method is used in the present work allowing the growth of structures such as p-n junctions, intercalation of magnetic or superconducting dots. We report the synthesis of high-quality TI NW: Bi2Te3, Sb2Te3 and p-n junction via electrodeposition. Structural, morphological, and nanostructure properties of NWs have been investigated by various characterization techniques. Interface structures and lateral heterojunctions (LHJ) in p-n junction NWs has also been made.

3.
Bioconjug Chem ; 32(4): 782-793, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33797231

RESUMO

A small library of amphiphilic prodrugs has been synthesized by conjugation of gemcitabine (Gem) (a hydrophilic nucleoside analogue) to a series of lipid moieties and investigated for their capacity to spontaneously self-assemble into nanosized objects by simple nanoprecipitation. Four of these conjugates formed stable nanoparticles (NPs), while with the others, immediate aggregation occurred, whatever the tested experimental conditions. Whether such capacity could have been predicted based on the prodrug physicochemical features was a matter of question. Among various parameters, the hydrophilic-lipophilic balance (HLB) value seemed to hold a predictive character. Indeed, we identified a threshold value which well correlated with the tendency (or not) of the synthesized prodrugs to form stable nanoparticles. Such a hypothesis was further confirmed by broadening the analysis to Gem and other nucleoside prodrugs already described in the literature. We also observed that, in the case of Gem prodrugs, the lipid moiety affected not only the colloidal properties but also the in vitro anticancer efficacy of the resulting nanoparticles. Overall, this study provides a useful demonstration of the predictive potential of the HLB value for lipid prodrug NP formulation and highlights the need of their opportune in vitro screening, as optimal drug loading does not always translate in an efficient biological activity.


Assuntos
Desoxicitidina/análogos & derivados , Lipídeos/química , Nanopartículas/química , Pró-Fármacos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Coloides/química , Desoxicitidina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Difração de Pó , Pró-Fármacos/síntese química , Gencitabina
4.
Langmuir ; 36(31): 9124-9131, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32672970

RESUMO

Rare-earth-doped oxides are a class of compounds that have been largely studied in the context of the development of luminescent nanocrystals for various applications including fluorescent labels for bioimaging, MRI contrast agents, luminescent nanocomposite coatings, etc. Elaboration of colloidal suspensions is usually achieved through coprecipitation. Particles exhibit emission properties that are similar to the bulk counterparts, although altered by crystalline defects or surface quenching species. Focusing on YVO4:Eu, one of the first reported systems, the aim of this work is to revisit the elaboration of nanoparticles obtained through a simple aqueous coprecipitation route. The objective is more precisely to get a better understanding of the parameters affecting the particles' internal microstructure, a feature that is poorly controlled and characterized. We show that the hydroxyl concentration in the precursor solution has a drastic effect on the particles' microstructure. Moreover, discrepancies in the reported particle structure are shown to possibly arise from the carbonation of the strongly basic orthovanadate precursor. For this study, SAXS/WAXS is shown to be a powerful tool to characterize the multiscale structure of the particles. It could be shown that playing on the precursor composition, it may be varied between almost monocrystalline nanocrystals to particles exhibiting a hierarchical microstructure well described by a surface fractal model. This work provides a new methodology for the characterization of nanoparticles microstructure and opens new directions for its optimization in view of applications.

5.
Nanomaterials (Basel) ; 9(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689917

RESUMO

Lanthanide-doped nanoparticles are widely investigated for their optical properties. However, the sensitivity of the lanthanide ions' luminescence to the local symmetry, useful when investigating structural environments, becomes a drawback for optimized properties in the case of poorly controlled crystallinity. In this paper, we focus on ß -NaYF4 nanorods in order to provide a detailed description of their chemical composition and microstructure. The combination of detailed XRD analysis and TEM observations show that strong variation may be observed from particles from a same batch of synthesis, but also when considering small variations of synthesis conditions. Moreover, also the nanorods observed by SEM exhibit a very nice faceted shape, they are far from being monocrystalline and present significant local deviation of crystalline symmetry and orientation. All these structural considerations, sensitively probed by polarized emission analysis, are crucial to analyze for the development of optimal systems toward the targeted applications.

6.
J Am Chem Soc ; 140(30): 9512-9517, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29969893

RESUMO

Lanthanide elements exhibit highly appealing spectroscopic properties that are extensively used for phosphor applications. Their luminescence contains precise information on the internal structure of the host materials. Especially, the polarization behavior of the transition sublevel peaks is a fingerprint of the crystal phase, symmetry, and defects. However, this unique feature is poorly explored in current research on lanthanide nanophosphors. We here report on a detailed investigation of the evolution of Eu3+ luminescence during the thermally induced phase transition of LaPO4 nanocrystal hosts. By means of c-axis-aligned nanocrystal assemblies, we demonstrate a dramatic change of the emission polarization feature corresponding to the distinct Eu3+ site symmetries in different LaPO4 polymorphs. We also show that changes of the nanocrystal structure can be identified by this spectroscopic method, with a much higher sensitivity than the X-ray diffraction analysis. This new insight into the nanostructure-luminescence relationship, associated with the unprecedented polarization characterizations, provides a new methodology to investigate phase transitions in nanomaterials. It also suggests a novel function of lanthanide emitters as orientation-sensing nanoprobes for innovative applications such as in bioimaging or microfluidics.

7.
Langmuir ; 27(9): 5555-61, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21469685

RESUMO

Crystalline rare earth fluoride nanoparticles were synthesized by reacting rare earth ions with charge-transfer complexes, in solution, under mild conditions. An infrared study showed that these intermediate complexes are made up of solvent molecules (amide: N,N-dimethylformamide, 1-methyl-2-pyrrolidinone, etc.) and fluoride ions coming from hydrofluoric acid. The size and shape of the particles can be controlled through the process parameters. The complete study of the particles obtained through this process is carried out in this document, especially for the YbF(3) system. However, the process can easily be extended to the whole series of rare earth elements. We also show the ability of these objects to be transferred from an aqueous medium to an organic phase thanks to their surface modification. Finally, transparent monolithic xerogels of rare earth fluoride have been developed starting from the prepared colloidal solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA