Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670608

RESUMO

Agronomic biofortification is one of the main strategies for alleviation of micronutrient deficiencies in human populations and promoting sustainable production of food and feed. The aim of this study was to investigate the effect of nitrogen (N)fertilization on biofortification of maize crop (Zea mays L.) with zinc (Zn), iron (Fe) and selenium (Se) grown on a micronutrient deficient soil under greenhouse conditions. Factorial design experiment was set under greenhouse conditions. The experiment consisted of two levels of each N, Zn, Fe and Se. The levels for N were 125 and 250 mg N kg-1 soil; Zn were 1 and 5 mg Zn kg-1 soil; levels of Fe were 0 and 10 mg Fe kg-1 soil; levels of Se were 0 and 0.02 mg Se kg-1 soil. An additional experiment was also conducted to study the effect of the Zn form applied as a ZnO or ZnSO4 on shoot growth, shoot Zn concentration and total shoot Zn uptake per plant. Shoot Zn concentrations increased by increasing soil Zn application both with ZnSO4 and ZnO treatments, but the shoot Zn concentration and total Zn uptake were much greater with ZnSO4 than the ZnO application. Under given experimental conditions, increasing soil N supply improved shoot N concentration; but had little effect on shoot dry matter production. The concentrations of Zn and Fe in shoots were significantly increased by increasing N application. In case of total uptake of Zn and Fe, the positive effect of N nutrition was more pronounced. Although Se soil treatment had significant effect, N application showed no effect on Se concentration and accumulation in maize shoots. The obtained results show that N fertilization is an effective tool in improving the Zn and Fe status of silage maize and contribute to the better-quality feed.

2.
Front Plant Sci ; 11: 589835, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304367

RESUMO

Widespread malnutrition of zinc (Zn), iodine (I), iron (Fe) and selenium (Se), known as hidden hunger, represents a predominant cause of several health complications in human populations where rice (Oryza sativa L.) is the major staple food. Therefore, increasing concentrations of these micronutrients in rice grain represents a sustainable solution to hidden hunger. This study aimed at enhancing concentration of Zn, I, Fe and Se in rice grains by agronomic biofortification. We evaluated effects of foliar application of Zn, I, Fe and Se on grain yield and grain concentration of these micronutrients in rice grown at 21 field sites during 2015 to 2017 in Brazil, China, India, Pakistan and Thailand. Experimental treatments were: (i) local control (LC); (ii) foliar Zn; (iii) foliar I; and (iv) foliar micronutrient cocktail (i.e., Zn + I + Fe + Se). Foliar-applied Zn, I, Fe or Se did not affect rice grain yield. However, brown rice Zn increased with foliar Zn and micronutrient cocktail treatments at all except three field sites. On average, brown rice Zn increased from 21.4 mg kg-1 to 28.1 mg kg-1 with the application of Zn alone and to 26.8 mg kg-1 with the micronutrient cocktail solution. Brown rice I showed particular enhancements and increased from 11 µg kg-1 to 204 µg kg-1 with the application of I alone and to 181 µg kg-1 with the cocktail. Grain Se also responded very positively to foliar spray of micronutrients and increased from 95 to 380 µg kg-1. By contrast, grain Fe was increased by the same cocktail spray at only two sites. There was no relationship between soil extractable concentrations of these micronutrients with their grain concentrations. The results demonstrate that irrespective of the rice cultivars used and the diverse soil conditions existing in five major rice-producing countries, the foliar application of the micronutrient cocktail solution was highly effective in increasing grain Zn, I and Se. Adoption of this agronomic practice in the target countries would contribute significantly to the daily micronutrient intake and alleviation of micronutrient malnutrition in human populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA