Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878777

RESUMO

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.

2.
Immunity ; 57(4): 674-699, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599165

RESUMO

Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.


Assuntos
Inflamassomos , Receptores de Reconhecimento de Padrão , Inflamassomos/metabolismo , Piroptose , Imunidade Inata , Nucleotídeos
4.
J Vis Exp ; (191)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36744800

RESUMO

Innate immunity provides the critical first line of defense in response to pathogens and sterile insults. A key mechanistic component of this response is the initiation of innate immune programmed cell death (PCD) to eliminate infected or damaged cells and propagate immune responses. However, excess PCD is associated with inflammation and pathology. Therefore, understanding the activation and regulation of PCD is a central aspect of characterizing innate immune responses and identifying new therapeutic targets across the disease spectrum. This protocol provides methods for characterizing innate immune PCD activation by monitoring caspases, a family of cysteine-dependent proteases that are often associated with diverse PCD pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. Initial reports characterized caspase-2, caspase-8, caspase-9, and caspase-10 as initiator caspases and caspase-3, caspase-6, and caspase-7 as effector caspases in apoptosis, while later studies found the inflammatory caspases, caspase-1, caspase-4, caspase-5, and caspase-11, drive pyroptosis. It is now known that there is extensive crosstalk between the caspases and other innate immune and cell death molecules across the previously defined PCD pathways, identifying a key knowledge gap in the mechanistic understanding of innate immunity and PCD and leading to the characterization of PANoptosis. PANoptosis is a unique innate immune inflammatory PCD pathway regulated by PANoptosome complexes, which integrate components, including caspases, from other cell death pathways. Here, methods for assessing the activation of caspases in response to various stimuli are provided. These methods allow for the characterization of PCD pathways both in vitro and in vivo, as activated caspases undergo proteolytic cleavage that can be visualized by western blotting using optimal antibodies and blotting conditions. A protocol and western blotting workflow have been established that allow for the assessment of the activation of multiple caspases from the same cellular population, providing a comprehensive characterization of the PCD processes. This method can be applied across research areas in development, homeostasis, infection, inflammation, and cancer to evaluate PCD pathways throughout cellular processes in health and disease.


Assuntos
Apoptose , Caspases , Humanos , Morte Celular/fisiologia , Apoptose/fisiologia , Caspases/metabolismo , Inflamação , Imunidade Inata
5.
Eur J Immunol ; 53(11): e2250235, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36782083

RESUMO

Regulated cell death (RCD) triggered by innate immune activation is an important strategy for host survival during pathogen invasion and perturbations of cellular homeostasis. There are two main categories of RCD, including nonlytic and lytic pathways. Apoptosis is the most well-characterized nonlytic RCD, and the inflammatory pyroptosis and necroptosis pathways are among the best known lytic forms. While these were historically viewed as independent RCD pathways, extensive evidence of cross-talk among their molecular components created a knowledge gap in our mechanistic understanding of RCD and innate immune pathway components, which led to the identification of PANoptosis. PANoptosis is a unique innate immune inflammatory RCD pathway that is regulated by PANoptosome complexes upon sensing pathogens, pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) or the cytokines produced downstream. Cytosolic innate immune sensors and regulators, such as ZBP1, AIM2 and RIPK1, promote the assembly of PANoptosomes to drive PANoptosis. In this review, we discuss the molecular components of the known PANoptosomes and highlight the mechanisms of PANoptosome assembly, activation and regulation identified to date. We also discuss how PANoptosomes and mutations in PANoptosome components are linked to diseases. Given the impact of RCD, and PANoptosis specifically, across the disease spectrum, improved understanding of PANoptosomes and their regulation will be critical for identifying new therapeutic targets and strategies.


Assuntos
Apoptose , Piroptose , Morte Celular , Citosol , Imunidade Inata
6.
PLoS Biol ; 21(2): e3002022, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763683

RESUMO

The past 20 years of research has elucidated new innate immune sensing and cell death pathways with disease relevance. Future molecular characterization of these pathways and their crosstalk and functional redundancies will aid in development of therapeutic strategies.


Assuntos
Imunidade Inata , Morte Celular
7.
Cells ; 11(9)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563804

RESUMO

The innate immune system provides the first line of defense against cellular perturbations. Innate immune activation elicits inflammatory programmed cell death in response to microbial infections or alterations in cellular homeostasis. Among the most well-characterized programmed cell death pathways are pyroptosis, apoptosis, and necroptosis. While these pathways have historically been defined as segregated and independent processes, mounting evidence shows significant crosstalk among them. These molecular interactions have been described as 'crosstalk', 'plasticity', 'redundancies', 'molecular switches', and more. Here, we discuss the key components of cell death pathways and note several examples of crosstalk. We then explain how the diverse descriptions of crosstalk throughout the literature can be interpreted through the lens of an integrated inflammatory cell death concept, PANoptosis. The totality of biological effects in PANoptosis cannot be individually accounted for by pyroptosis, apoptosis, or necroptosis alone. We also discuss PANoptosomes, which are multifaceted macromolecular complexes that regulate PANoptosis. We consider the evidence for PANoptosis, which has been mechanistically characterized during influenza A virus, herpes simplex virus 1, Francisella novicida, and Yersinia infections, as well as in response to altered cellular homeostasis, in inflammatory diseases, and in cancers. We further discuss the role of IRF1 as an upstream regulator of PANoptosis and conclude by reexamining historical studies which lend credence to the PANoptosis concept. Cell death has been shown to play a critical role in infections, inflammatory diseases, neurodegenerative diseases, cancers, and more; therefore, having a holistic understanding of cell death is important for identifying new therapeutic strategies.


Assuntos
Herpesvirus Humano 1 , Necroptose , Apoptose , Morte Celular , Piroptose
8.
Pharmacol Ther ; 232: 108010, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34619283

RESUMO

Programmed cell death (PCD) is an essential part of organismal development and plays fundamental roles in host defense against pathogens and the maintenance of homeostasis. However, excess activation of PCD pathways has proven to be detrimental and can drive disease. Additionally, resistance to PCD can also contribute to disease development. Modulation of PCD, therefore, has great therapeutic potential in a wide range of diseases, including infectious, neurodegenerative, autoinflammatory, and metabolic diseases and cancer. Nevertheless, manipulation of cell death and inflammation for therapeutic intervention is a delicate process, highly specific to the context of the disease of interest, making the selection of the appropriate target molecule crucially important. Several PCD pathways are associated with innate immunity, including pyroptosis, apoptosis, necroptosis, and PANoptosis, which is defined as an inflammatory PCD pathway with key features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these three PCD pathways alone. All of these PCD pathways are regulated by upstream sensors and signaling cascades that assemble multimeric complexes to serve as activation platforms for downstream molecules; these sensors and signaling molecules provide attractive target points for therapeutic intervention. Here, we discuss the molecular mechanisms of innate immune-mediated cell death in health and disease, with a particular focus on the molecules putatively involved in the formation of the PANoptosome and the induction of inflammatory cell death. Further, we discuss the implications and feasibility of targeting these molecules to improve disease outcomes, as well as current clinical approaches.


Assuntos
Necroptose , Piroptose , Apoptose , Morte Celular , Humanos , Imunidade Inata
10.
NPJ Vaccines ; 6(1): 49, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824336

RESUMO

Malaria transmission-blocking vaccines (TBVs) prevent the completion of the developmental lifecycle of malarial parasites within the mosquito vector, effectively blocking subsequent infections. The mosquito midgut protein Anopheline alanyl aminopeptidase N (AnAPN1) is the leading, mosquito-based TBV antigen. Structure-function studies identified two Class II epitopes that can induce potent transmission-blocking (T-B) antibodies, informing the design of the next-generation AnAPN1. Here, we functionally screened new immunogens and down-selected to the UF6b construct that has two glycine-linked copies of the T-B epitopes. We then established a process for manufacturing UF6b and evaluated in outbred female CD1 mice the immunogenicity of the preclinical product with the human-safe adjuvant Glucopyranosyl Lipid Adjuvant in a liposomal formulation with saponin QS21 (GLA-LSQ). UF6b:GLA-LSQ effectively immunofocused the humoral response to one of the key T-B epitopes resulting in potent T-B activity, underscoring UF6b as a prime TBV candidate to aid in malaria elimination and eradication efforts.

11.
Nat Protoc ; 15(10): 3284-3333, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895525

RESUMO

Inflammasomes are multimeric heterogeneous mega-Dalton protein complexes that play key roles in the host innate immune response to infection and sterile insults. Assembly of the inflammasome complex following infection or injury begins with the oligomerization of the upstream inflammasome-forming sensor and proceeds through a multistep process of well-coordinated events and downstream effector functions. Together, these steps enable elegant experimental readouts with which to reliably assess the successful activation of the inflammasome complex and cell death. Here, we describe a comprehensive protocol that details several in vitro (in bone marrow-derived macrophages) and in vivo (in mice) strategies for activating the inflammasome and explain how to subsequently assess multiple downstream effects in parallel to unequivocally establish the activation status of the inflammasome and cell death pathways. Our workflow assesses inflammasome activation via the formation of the apoptosis-associated speck-like protein containing a CARD (ASC) speck; cleavage of caspase-1 and gasdermin D; release of IL-1ß, IL-18, caspase-1, and lactate dehydrogenase from the cell; and real-time analysis of cell death by imaging. Analyses take up to ~24 h to complete. Overall, our multifaceted approach provides a comprehensive and consistent protocol for assessing inflammasome activation and cell death.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Inflamassomos/metabolismo , Inflamassomos/fisiologia , Animais , Apoptose , Caspase 1/metabolismo , Morte Celular/fisiologia , Feminino , Imunidade Inata , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , L-Lactato Desidrogenase/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo
12.
Trends Mol Med ; 26(11): 969-971, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32948447

RESUMO

Inflammasomes are a group of cytosolic multiprotein complexes that are assembled in response to pathogen- and damage-associated molecular patterns and cellular stress. Inflammasome assembly drives the maturation and secretion of proinflammatory cytokines and induces pyroptosis. Here, we highlight key advances in inflammasome research with therapeutic potential.


Assuntos
Inflamassomos/metabolismo , Pesquisa/tendências , Animais , Apoptose , Biomarcadores , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo , Piroptose
14.
Front Pharmacol ; 10: 1265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708786

RESUMO

Malaria is a major global health threat, with nearly half the world's population at risk of infection. Given the recently described delayed clearance of parasites by artemisinin-combined therapies, new antimalarials are needed to facilitate the global effort toward elimination and eradication. NPC1161 is an 8-aminoquinoline that is derived from primaquine with an improved therapeutic profile compared to the parent compound. The (R)-(-) enantiomer (NPC1161B) has a lower effective dose that results in decreased toxic side effects such as hemolysis compared to the (S)-(+)-enantiomer, making it a promising compound for consideration for clinical development. We explored the effect of NPC1161B on Plasmodium falciparum oocyst and sporozoite development to evaluate its potential transmission-blocking activity viz. its ability to cure mosquitoes of an ongoing infection. When mosquitoes were fed NPC1161B 4 days after P. falciparum infection, we observed that total oocyst numbers were not affected by NPC1161B treatment. However, the sporozoite production capacity of the oocysts was impaired, and salivary gland sporozoite infections were completely blocked, rendering the mosquitoes non-infectious. Importantly, NPC1161B did not require prior liver metabolism for its efficacy as is required in mammalian systems, suggesting that an alternative metabolite is produced in the mosquito that is active against the parasite. We performed liquid chromatography-mass spectrometry (LC-MS)/MS analysis of methanol extracts from the midguts of mosquitoes fed on an NPC1161B (434.15 m/z)-treated blood meal and identified a compound with a mass of 520.2 m/z, likely a conjugate of NPC1161B or an oxidized metabolite. These findings establish NPC1161B, and potentially its metabolites, as transmission-blocking candidates for the treatment of P. falciparum.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31334132

RESUMO

Thrombospondin type I repeat (TSR) domains are commonly O-fucosylated by protein O-fucosyltransferase 2 (PoFUT2), and this modification is required for optimal folding and secretion of TSR-containing proteins. The human malaria parasite Plasmodium falciparum expresses proteins containing TSR domains, such as the thrombospondin-related anonymous protein (TRAP) and circumsporozoite surface protein (CSP), which are O-fucosylated. TRAP and CSP are present on the surface of sporozoites and play essential roles in mosquito and human host invasion processes during the transmission stages. Here, we have generated PoFUT2 null-mutant P. falciparum and Plasmodium berghei (rodent) malaria parasites and, by phenotyping them throughout their complete life cycle, we show that PoFUT2 disruption does not affect the growth through the mosquito stages for both species. However, contrary to what has been described previously by others, P. berghei PoFUT2 null mutant sporozoites showed no deleterious motility phenotypes and successfully established blood stage infection in mice. This unexpected result indicates that the importance of O-fucosylation of TSR domains may differ between human and RODENT malaria parasites; complicating our understanding of glycosylation modifications in malaria biology.


Assuntos
Fucosiltransferases/metabolismo , Plasmodium berghei/enzimologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Animais , Linhagem Celular , Culicidae/parasitologia , Modelos Animais de Doenças , Fucosiltransferases/genética , Glicosilação , Humanos , Estágios do Ciclo de Vida , Malária/parasitologia , Malária/transmissão , Malária Falciparum/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oocistos/metabolismo , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/enzimologia , Esporozoítos/genética , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/metabolismo
16.
Front Microbiol ; 10: 127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891005

RESUMO

In vitro studies of liver stage (LS) development of the human malaria parasite Plasmodium falciparum are technically challenging; therefore, fundamental questions about hepatocyte receptors for invasion that can be targeted to prevent infection remain unanswered. To identify novel receptors and to further understand human hepatocyte susceptibility to P. falciparum sporozoite invasion, we created an optimized in vitro system by mimicking in vivo liver conditions and using the subcloned HC-04.J7 cell line that supports mean infection rates of 3-5% and early development of P. falciparum exoerythrocytic forms-a 3- to 5-fold improvement on current in vitro hepatocarcinoma models for P. falciparum invasion. We juxtaposed this invasion-susceptible cell line with an invasion-resistant cell line (HepG2) and performed comparative proteomics and RNA-seq analyses to identify host cell surface molecules and pathways important for sporozoite invasion of host cells. We identified and investigated a hepatocyte cell surface heparan sulfate proteoglycan, glypican-3, as a putative mediator of sporozoite invasion. We also noted the involvement of pathways that implicate the importance of the metabolic state of the hepatocyte in supporting LS development. Our study highlights important features of hepatocyte biology, and specifically the potential role of glypican-3, in mediating P. falciparum sporozoite invasion. Additionally, it establishes a simple in vitro system to study the LS with improved invasion efficiency. This work paves the way for the greater malaria and liver biology communities to explore fundamental questions of hepatocyte-pathogen interactions and extend the system to other human malaria parasite species, like P. vivax.

17.
Pathogens ; 7(4)2018 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-30477234

RESUMO

The liver stage of the Plasmodium life cycle features sporozoite traversal of the liver sinusoidal barrier through Kupffer cells (KCs) followed by invasion of hepatocytes. Little is known about the interaction of Plasmodium sporozoites with KCs, the liver-resident macrophages. Previous reports suggest KCs do not mount a pro-inflammatory response and undergo cell death following this interaction. Our work explores this interaction using primary rat KCs (PRKCs) and Plasmodium berghei sporozoites. We analyzed PRKC culture supernatants for markers of an immunological response through cytokine arrays. Additionally, cell wounding and death were assessed by monitoring lactate dehydrogenase (LDH) levels in these supernatants and by live/dead cell imaging. We found that PRKCs mount an immunological response to P. berghei sporozoites by releasing a diverse set of both pro- and anti-inflammatory cytokines, including IFNγ, IL-12p70, Mip-3α, IL-2, RANTES, IL-1α, IL-4, IL-5, IL-13, EPO, VEGF, IL-7, and IL-17α. We also observed no difference in LDH level or live/dead staining upon sporozoite exposure, suggesting that the KCs are not deeply wounded or dying. Overall, our data suggest that sporozoites may be actively modulating the KC's reaction to their presence and altering the way the innate immune system is triggered by KCs.

18.
Cell Rep ; 18(13): 3105-3116, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355563

RESUMO

Malaria sporozoites are deposited into the skin by mosquitoes and infect hepatocytes. The molecular basis of how Plasmodium falciparum sporozoites migrate through host cells is poorly understood, and direct evidence of its importance in vivo is lacking. Here, we generated traversal-deficient sporozoites by genetic disruption of sporozoite microneme protein essential for cell traversal (PfSPECT) or perforin-like protein 1 (PfPLP1). Loss of either gene did not affect P. falciparum growth in erythrocytes, in contrast with a previous report that PfPLP1 is essential for merozoite egress. However, although traversal-deficient sporozoites could invade hepatocytes in vitro, they could not establish normal liver infection in humanized mice. This is in contrast with NF54 sporozoites, which infected the humanized mice and developed into exoerythrocytic forms. This study demonstrates that SPECT and perforin-like protein 1 (PLP1) are critical for transcellular migration by P. falciparum sporozoites and demonstrates the importance of cell traversal for liver infection by this human pathogen.


Assuntos
Movimento Celular , Fígado/patologia , Fígado/parasitologia , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Animais , Hepatócitos/parasitologia , Hepatócitos/patologia , Humanos , Camundongos SCID , Mutação/genética , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
19.
Mol Cell Proteomics ; 13(5): 1153-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532842

RESUMO

The routine study of human malaria liver-stage biology in vitro is hampered by low infection efficiency of human hepatocellular carcinoma (HCC) lines (<0.1%), poor understanding of steady-state HCC biology, and lack of appropriate tools for trace sample analysis. HC-04 is the only HCC that supports complete development of human malaria parasites. We hypothesized that HCCs are in various intermediate stages of the epithelial-mesenchymal transition (EMT) and HC-04s retain epithelial characteristics that permit infection. We developed a facile analytical approach to test this hypothesis viz. the HC-04 response to hepatocyte growth factor (HGF). We used online two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) to quantify protein expression profiles in HC-04 pre-/post-HGF treatment and validated these results by RT-qPCR and microscopy. We successfully increased protein identification efficiency over offline-2D methods by 12-fold, using less sample material, allowing robust protein quantification. We observed expected up-regulation and down-regulation of EMT protein markers in response to HGF, but also unexpected cellular responses. We also observed that HC-04 is generally more susceptible to HGF-mediated signaling than what was observed for HepG2, a widely used, but poor malaria liver stage-HCC model. Our analytical approach to understanding the basic biology of HC-04 helps us understand the factors that may influence its utility as a model for malaria liver-stage development. We observed that HC-04 treatment with HGF prior to the addition of Plasmodium falciparum sporozoites did not facilitate cell invasion, which suggests unlinking the effect of HGF on malaria liver stage development from hepatocyte invasion. Finally, our 2D-LC-MS/MS approach and broadly applicable experimental strategy should prove useful in the analysis of various hepatocyte-pathogen interactions, tumor progression, and early disease events.


Assuntos
Linhagem Celular Tumoral/parasitologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/parasitologia , Malária Falciparum/parasitologia , Modelos Biológicos , Plasmodium falciparum/fisiologia , Linhagem Celular Tumoral/citologia , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Transporte Proteico , Proteômica , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA