Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cancer Immunol Res ; 10(5): 581-596, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35286392

RESUMO

IL-2 is a cytokine clinically approved for the treatment of melanoma and renal cell carcinoma. Unfortunately, its clinical utility is hindered by serious side effects driven by the systemic activity of the cytokine. Here, we describe the design and characterization of a conditionally activated IL-2 prodrug, WTX-124, that takes advantage of the dysregulated protease milieu of tumors. WTX-124 was engineered as a single molecule containing an inactivation domain and a half-life extension domain that are tethered to a fully active IL-2 by protease-cleavable linkers. We show that the inactivation domain prevented IL-2 from binding to its receptors in nontumor tissues, thereby minimizing the toxicity associated with systemic exposure to IL-2. The half-life extension element improves the pharmacokinetic profile of WTX-124 over free IL-2, allowing for greater exposure. WTX-124 was preferentially activated in tumor tissue by tumor-associated proteases, releasing active IL-2 in the tumor microenvironment. In vitro assays confirmed that the activity of WTX-124 was dependent on proteolytic activation, and in vivo WTX-124 treatment resulted in complete rejection of established tumors in a cleavage-dependent manner. Mechanistically, WTX-124 treatment triggered the activation of T cells and natural killer (NK) cells, and markedly shifted the immune activation profile of the tumor microenvironment, resulting in significant inhibition of tumor growth in syngeneic tumor models. Collectively, these data demonstrate that WTX-124 minimizes the toxicity of IL-2 treatment in the periphery while retaining the full pharmacology of IL-2 in the tumor microenvironment, supporting its further development as a cancer immunotherapy treatment. See related Spotlight by Silva, p. 544.


Assuntos
Interleucina-2 , Melanoma , Citocinas , Humanos , Imunoterapia , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Peptídeo Hidrolases , Microambiente Tumoral
2.
Cancer Prev Res (Phila) ; 11(10): 629-642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30021726

RESUMO

There are conflicting epidemiologic data on whether chronic aspirin (ASA) use may reduce melanoma risk in humans. Potential anticancer effects of ASA may be mediated by its ability to suppress prostaglandin E2 (PGE2) production and activate 5'-adenosine monophosphate-activated protein kinase (AMPK). We investigated the inhibitory effects of ASA in a panel of melanoma and transformed melanocyte cell lines, and on tumor growth in a preclinical model. ASA and the COX-2 inhibitor celecoxib did not affect melanoma cell viability, but significantly reduced colony formation, cell motility, and pigmentation (melanin production) in vitro at concentrations of 1 mmol/L and 20 µmol/L, respectively. ASA-mediated inhibition of cell migration and pigmentation was rescued by exogenous PGE2 or Compound C, which inhibits AMPK activation. Levels of tyrosinase, MITF, and p-ERK were unaffected by ASA exposure. Following a single oral dose of 0.4 mg ASA to NOD/SCID mice, salicylate was detected in plasma and skin at 4 hours and PGE2 levels were reduced up to 24 hours. Some human melanoma tumors xenografted into NOD/SCID mice were sensitive to chronic daily ASA administration, exhibiting reduced growth and proliferation. ASA-treated mice bearing sensitive and resistant tumors exhibited both decreased PGE2 in plasma and tumors and increased phosphorylated AMPK in tumors. We conclude that ASA inhibits colony formation, cell motility, and pigmentation through suppression of PGE2 and activation of AMPK and reduces growth of some melanoma tumors in vivo This preclinical model could be used for further tumor and biomarker studies to support future melanoma chemoprevention trials in humans. Cancer Prev Res; 11(10); 629-42. ©2018 AACR.


Assuntos
Adenilato Quinase/metabolismo , Aspirina/farmacologia , Dinoprostona/metabolismo , Melanoma/prevenção & controle , Administração Oral , Animais , Aspirina/uso terapêutico , Celecoxib/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Humanos , Masculino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/prevenção & controle , Pigmentação da Pele/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncotarget ; 8(34): 55848-55862, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915557

RESUMO

The tumor suppressor p16INK4A (p16) inhibits cell cycle progression through the CDK4/Rb pathway. We have previously shown that p16 regulates cellular oxidative stress, independent of its role in cell cycle control. We investigated whether loss of p16 had a direct impact on the mitochondria. We found that p16-null primary mouse fibroblasts (PMFs) displayed increased mitochondrial mass and expression of mitochondrial respiratory subunit proteins compared to wild-type (WT) PMFs. These findings in p16-null PMFs were associated with increased expression of the mitochondrial biogenesis transcription factors PRC and TFAM. On the other hand, p16-deficient PMFs demonstrated reduced mitochondrial respiration capacity consistent with electron microscopy findings showing that mitochondria in p16-deficient PMFs have abnormal morphology. Consistent with increased mitochondrial mass and reduced respiratory capacity, p16-deficient PMFs generated increased mitochondrial superoxide. One biological consequence of elevated ROS in p16-deficient PMFs was enhanced migration, which was reduced by the ROS scavenger N-acetylcysteine. Finally, p16-deficient PMFs displayed increased mitochondrial membrane potential, which was also required for their enhanced migration. The mitochondrial and migration phenotype was restored in p16-deficient PMFs by forced expression of p16. Similarly, over-expression of p16 in human melanocytes and A375 melanoma cells led to decreased expression of some mitochondrial respiratory proteins, enhanced respiration, and decreased migration. Inhibition of Rb phosphorylation in melanocytes and melanoma cells, either by addition of chemical CDK4 inhibitors or RNAi-mediated knockdown of CDK4, did not mimic the effects of p16 loss. These results suggest that p16 regulates mitochondrial biogenesis and function, which is independent of the canonical CDK4/Rb pathway.

4.
EBioMedicine ; 7: 157-66, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27322469

RESUMO

Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.


Assuntos
Transtornos Cognitivos/genética , Frutose/administração & dosagem , Redes Reguladoras de Genes , Doenças Metabólicas/genética , Nutrigenômica/métodos , Animais , Biglicano/genética , Biglicano/metabolismo , Epigenômica/métodos , Fibromodulina/genética , Fibromodulina/metabolismo , Perfilação da Expressão Gênica/métodos , Hipocampo/química , Humanos , Hipotálamo/química , Masculino , Redes e Vias Metabólicas , Modelos Animais , Medicina de Precisão , Ratos , Biologia de Sistemas/métodos
5.
Biochim Biophys Acta ; 1852(5): 862-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25661191

RESUMO

Traumatic brain injury (TBI) is followed by a state of metabolic dysfunction, affecting the ability of neurons to use energy and support brain plasticity; there is no effective therapy to counteract the TBI pathology. Brain-derived neurotrophic factor (BDNF) has an exceptional capacity to support metabolism and plasticity, which highly contrasts with its poor pharmacological profile. We evaluated the action of a flavonoid derivative 7,8-dihydroxyflavone (7,8-DHF), a BDNF receptor (TrkB) agonist with the pharmacological profile congruent for potential human therapies. Treatment with 7,8-DHF (5mg/kg, ip, daily for 7 days) was effective to ameliorate the effects of TBI on plasticity markers (CREB phosphorylation, GAP-43 and syntaxin-3 levels) and memory function in Barnes maze test. Treatment with 7,8-DHF restored the decrease in protein and phenotypic expression of TrkB phosphorylation after TBI. In turn, intrahippocampal injections of K252a, a TrkB antagonist, counteracted the 7,8-DHF induced TrkB signaling activation and memory improvement in TBI, suggesting the pivotal role of TrkB signaling in cognitive performance after brain injury. A potential action of 7,8-DHF on cell energy homeostasis was corroborated by the normalization in levels of PGC-1α, TFAM, COII, AMPK and SIRT1 in animals subjected to TBI. Results suggest a potential mechanism by which 7,8-DHF counteracts TBI pathology via activation of the TrkB receptor and engaging the interplay between cell energy management and synaptic plasticity. Since metabolic dysfunction is an important risk factor for the development of neurological and psychiatric disorders, these results set a precedent for the therapeutic use of 7,8-DHF in a larger context.


Assuntos
Lesões Encefálicas/prevenção & controle , Flavonas/farmacologia , Receptor trkB/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Carbazóis/farmacologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/prevenção & controle , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Proteína GAP-43/metabolismo , Immunoblotting , Alcaloides Indólicos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Qa-SNARE/metabolismo , Ratos Sprague-Dawley , Receptor trkB/antagonistas & inibidores , Receptor trkB/metabolismo
6.
Biochim Biophys Acta ; 1852(5): 951-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25550171

RESUMO

Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18:3 n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissues. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders.


Assuntos
Transtornos de Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Curcumina/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Acetiltransferases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Encéfalo/metabolismo , Curcumina/administração & dosagem , Suplementos Nutricionais , Sinergismo Farmacológico , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Células Hep G2 , Humanos , Immunoblotting , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos Sprague-Dawley , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/farmacologia
7.
Neurobiol Dis ; 73: 307-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25283985

RESUMO

Quality nutrition during the period of brain formation is a predictor of brain functional capacity and plasticity during adulthood; however it is not clear how this conferred plasticity imparts long-term neural resilience. Here we report that early exposure to dietary omega-3 fatty acids orchestrates key interactions between metabolic signals and Bdnf methylation creating a reservoir of neuroplasticity that can protect the brain against the deleterious effects of switching to a Western diet (WD). We observed that the switch to a WD increased Bdnf methylation specific to exon IV, in proportion to anxiety-like behavior, in Sprague Dawley rats reared in low omega-3 fatty acid diet, and these effects were abolished by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine. Blocking methylation also counteracted the reducing action of WD on the transcription regulator CTCF binding to Bdnf promoter IV. In vitro studies confirmed that CTCF binding to Bdnf promoter IV is essential for the action of DHA on BDNF regulation. Diet is also intrinsically associated to cell metabolism, and here we show that the switch to WD downregulated cell metabolism (NAD/NADH ratio and SIRT1). The fact that DNA methyltransferase inhibitor did not alter these parameters suggests they occur upstream to methylation. In turn, the methylation inhibitor counteracted the action of WD on PGC-1α, a mitochondrial transcription co-activator and BDNF regulator, suggesting that PGC-1α is an effector of Bdnf methylation. Results support a model in which diet can build an "epigenetic memory" during brain formation that confers resilience to metabolic perturbations occurring in adulthood.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Animais , Ansiedade/dietoterapia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Decitabina , Dieta com Restrição de Gorduras/efeitos adversos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Metilação/efeitos dos fármacos , Camundongos , Neuroblastoma/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo
8.
Biochim Biophys Acta ; 1842(4): 535-46, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24345766

RESUMO

Metabolic dysfunction occurring after traumatic brain injury (TBI) is an important risk factor for the development of psychiatric illness. In the present study, we utilized an omega-3 diet during early life as a metabolic preconditioning to alter the course of TBI during adulthood. TBI animals under omega-3 deficiency were more prone to alterations in energy homeostasis (adenosine monophosphate-activated protein kinase; AMPK phosphorylation and cytochrome C oxidase II; COII levels) and mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PGC-1α and mitochondrial transcription factor A; TFAM). A similar response was found for brain-derived neurotrophic factor (BDNF) and its signaling through tropomyosin receptor kinase B (TrkB). The results from in vitro studies showed that 7,8-dihydroxyflavone (7,8-DHF), a TrkB receptor agonist, upregulates the levels of biogenesis activator PGC-1α, and CREB phosphorylation in neuroblastoma cells suggesting that BDNF-TrkB signaling is pivotal for engaging signals related to synaptic plasticity and energy metabolism. The treatment with 7,8-DHF elevated the mitochondrial respiratory capacity, which emphasizes the role of BDNF-TrkB signaling as mitochondrial bioenergetics stimulator. Omega-3 deficiency worsened the effects of TBI on anxiety-like behavior and potentiated a reduction of anxiolytic neuropeptide Y1 receptor (NPY1R). These results highlight the action of metabolic preconditioning for building long-term neuronal resilience against TBI incurred during adulthood. Overall, the results emphasize the interactive action of metabolic and plasticity signals for supporting neurological health.


Assuntos
Lesões Encefálicas/metabolismo , Metabolismo Energético , Homeostase , Plasticidade Neuronal , Animais , Ansiedade/etiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Mitocôndrias/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Receptor trkB/fisiologia , Transdução de Sinais , Fatores de Transcrição/análise
9.
Exp Neurol ; 253: 41-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361060

RESUMO

We assessed whether the protective action of progesterone on traumatic brain injury (TBI) could be influenced by the consumption of omega-3 fatty acids during early life. Pregnant Sprague-Dawley rats were fed on omega-3 adequate or deficient diet from 3rd day of pregnancy and their female offspring were kept on the same diets up to the age of 15 weeks. Ovariectomy was performed at the age of 12 weeks to deprive animals from endogenous steroids until the time of a fluid percussion injury (FPI). Dietary n-3 fatty acid deficiency increased anxiety in sham animals and TBI aggravated the effects of the deficiency. Progesterone replacement counteracted the effects of TBI on the animals reared under n-3 deficiency. A similar pattern was observed for markers of membrane homeostasis such as 4-Hydroxynonenal (HNE) and secreted phospholipases A2 (sPLA2), synaptic plasticity such as brain derived neurotrophic factor (BDNF), syntaxin (STX)-3 and growth associated protein (GAP)-43, and for growth inhibitory molecules such as myelin-associated glycoprotein (MAG) and Nogo-A. Results that progesterone had no effects on sham n-3 deficient animals suggest that the availability of progesterone is essential under injury conditions. Progesterone treatment counteracted several parameters related to synaptic plasticity and membrane stability reduced by FPI and n-3 deficiency suggest potential targets for therapeutic applications. These results reveal the importance of n-3 preconditioning during early life and the efficacy of progesterone therapy during adulthood to counteract weaknesses in neuronal and behavioral plasticity.


Assuntos
Lesões Encefálicas/prevenção & controle , Gorduras na Dieta/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Progesterona/uso terapêutico , Progestinas/uso terapêutico , Animais , Animais Recém-Nascidos , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Lesões Encefálicas/complicações , Lesões Encefálicas/etiologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Feminino , Proteína GAP-43/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas da Mielina/toxicidade , Glicoproteína Associada a Mielina/toxicidade , Neuropeptídeo Y/metabolismo , Proteínas Nogo , Ovariectomia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteínas Qa-SNARE/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
10.
Int J Alzheimers Dis ; 2013: 606083, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24175110

RESUMO

The association of inflammatory proteins with neuritic plaques in the brains of Alzheimer's disease (AD) patients has led to the hypothesis that inflammation plays a pivotal role in the development of pathology in AD. Earlier studies have shown that alpha 1-antichymotrypsin (ACT) enhances amyloid beta fibrillization and accelerated plaque formation in APP transgenic mice. Later studies from our laboratory have shown that purified ACT induces tau hyperphosphorylation and degeneration in neurons. In order to understand the mechanisms by which inflammatory proteins enhance tau hyperphosphorylation, we injected interleukin-1 ß (IL-1 ß ) intracerebroventricularly into mice expressing human ACT, human tau, or both transgenes. It was found that the hyperphosphorylation of tau in ACT and ACT/htau mice after IL-1 ß injection correlated with increased phosphorylation of c-Jun N-terminal kinase (JNK). We verified the involvement of JNK in ACT-induced tau phosphorylation by utilizing JNK inhibitors in cultured primary neurons treated with ACT, and we found that the inhibitor showed complete prevention of ACT-induced tau phosphorylation. These results indicate that JNK is one of the major kinases involved in the ACT-mediated tau hyperphosphorylation and suggest that inhibitors of this kinase may protect against inflammation-induced tau hyperphosphorylation and neurodegeneration associated with AD.

11.
Curr Opin Clin Nutr Metab Care ; 16(6): 726-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24071781

RESUMO

PURPOSE OF STUDY: To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. RECENT FINDINGS: Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long-term neuronal plasticity. SUMMARY: The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid docosahexenoic acid, disrupting neuronal signaling. Thus, dietary docosahexenoic acid seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation.


Assuntos
Cognição/fisiologia , Dieta , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Membrana Celular/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Epigenômica , Ácidos Graxos Ômega-3/administração & dosagem , Humanos , Atividade Motora , Neurônios/citologia , Estresse Oxidativo , Polifenóis/administração & dosagem
12.
PLoS One ; 8(3): e57945, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483949

RESUMO

Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1ß levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.


Assuntos
Ansiedade/etiologia , Lesões Encefálicas/complicações , Dieta/efeitos adversos , Transtornos de Estresse Pós-Traumáticos/etiologia , Envelhecimento/patologia , Animais , Ansiedade/patologia , Ansiedade/fisiopatologia , Biomarcadores/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Feminino , Plasticidade Neuronal , Fenótipo , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeo Y/metabolismo , Transtornos de Estresse Pós-Traumáticos/patologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
13.
Eur Neuropsychopharmacol ; 21(3): 261-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21195590

RESUMO

Brain insulin receptors (IRs) have been suggested as an important regulatory factor for cognitive functions but the involvement of IR signaling in memory deficit associated with neurodegenerative conditions is not yet explored. In the present study, IR gene expression was studied by RT-PCR and signaling pathways by immunoblotting in CA1, DG and CA3 subregions of hippocampus in intracerebroventricular (ICV) administered streptozotocin (STZ, 3mg/kg twice) induced memory deficit model in rat. The effect of pre- and post-treatment of donepezil (5mg/kg po) and melatonin (20mg/kg po) on signaling pathways were studied. Effect of LY294002 (ICV), a PI3 Kinase inhibitor, was also investigated on memory functions and Akt phosphorylation. An increased IR expression (both gene and protein), phosphorylation of Shc, Erk1/2, IRS-1 and Akt in CA1 and CA3 region of P2M fraction was observed after training as compared to control. STZ treated rats showed memory deficit and significant decrease in IR expression, phosphorylation of IRS-1 and Akt only in CA3 region as compared to trained group which were reversed by pre and post-treatment of melatonin but donepezil was effective only against memory deficit. LY294002 (3mM) treatment showed delayed learning and decrease in Akt phosphorylation. This study suggests that IR expression and its signaling pathways in hippocampal CA1 and CA3 regions are involved in memory functions and STZ (ICV) induced memory deficit. Hippocampal IR system might be playing an important role in regulation of memory functions, however only IR/IRS-1/Akt pathway in CA3 region is associated with STZ induced memory deficit.


Assuntos
Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Receptor de Insulina/metabolismo , Transdução de Sinais , Animais , Glicemia/metabolismo , Cromonas/farmacologia , Modelos Animais de Doenças , Donepezila , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Indanos/farmacologia , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Melatonina/farmacologia , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Morfolinas/farmacologia , Nootrópicos/farmacologia , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/genética , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/administração & dosagem
14.
Eur J Pharmacol ; 640(1-3): 206-10, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20450904

RESUMO

Melatonin, which plays an important role in circadian rhythm regulation, is highly potent endogenous free radical scavenger and antioxidant. To determine the efficacy of melatonin in neuroinflammation induced by intracerebroventricular (i.c.v.) administration of lipopolysachcharide (LPS, 50 microg), pro-inflammatory cytokines (TNF-alpha and IL-1beta), and markers of oxidative stress (malondialdehyde and reduced glutathione) were studied in different brain regions (striatum, cerebral cortex, hippocampus and hypothalamus) of rat. To study the cholinergic intervention during neuroinflammatory conditions acetylcholinesterase (AChE) enzyme activity was taken as marker of cholinergic activity. Melatonin (5 and 10 mg/kg, p.o.) decreased the LPS induced pro-inflammatory cytokines and oxidative stress in different brain regions. It was also found to inhibit the LPS induced increase in AChE activity. These results suggest the therapeutic potential of melatonin for neuroinflammation which is an integral part of neurodegenerative disorders.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Melatonina/farmacologia , Animais , Biomarcadores/metabolismo , Encéfalo/enzimologia , Citocinas/metabolismo , Inflamação/metabolismo , Masculino , Melatonina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
15.
Pharmacol Res ; 61(3): 247-52, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20026275

RESUMO

Curcumin, the principal curcuminoid of turmeric, exhibits beneficial role in several neurodegenerative disorders such as dementia of Alzheimer type. Recent evidences suggest the involvement of brain insulin receptors (IRs) in the pathophysiology of dementia disorders. Therefore, the present study was undertaken to investigate the effect of curcumin on memory functions, brain IRs, acetylcholinesterase (AChE) activity and oxidative stress in intracerebroventricular (ICV) administered streptozotocin (STZ) induced dementia in rats. Rats were injected with STZ (3 mg/kg, ICV) bilaterally twice, on day 1 and 3 and curcumin (200 mg/kg, po) was administered in pre- and post-treatment schedules. STZ (ICV) treated group had shown memory deficit as indicated by no significant decrease in latency time in Morris water maze test and significant decrease in IR protein level in both hippocampus and cerebral cortex. Pre- and post-treatment of curcumin in STZ (ICV) treated rats significantly restored the memory deficit and IR protein level in both the regions. Furthermore, STZ (ICV) resulted into enhanced AChE activity in hippocampus and cerebral cortex which was normalized by curcumin pre- and post-treatment. An increase in MDA level and decrease in GSH level were obtained in both hippocampus and cerebral cortex in STZ treated group, indicating state of oxidative stress, which was also attenuated by pre- and post-treatment of curcumin. The results suggest that besides the anticholinesterase and antioxidant activity, effect on brain IR may also be an important factor for protective effect of curcumin against STZ induced dementia model.


Assuntos
Encéfalo/metabolismo , Curcumina/uso terapêutico , Demência/metabolismo , Modelos Animais de Doenças , Memória/fisiologia , Receptor de Insulina/fisiologia , Estreptozocina/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Curcumina/farmacologia , Demência/induzido quimicamente , Demência/tratamento farmacológico , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/biossíntese
16.
Innate Immun ; 16(1): 3-13, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19586999

RESUMO

This study investigated the influence of the cholinergic system on neuro-inflammation using nicotinic and muscarinic receptor agonists and antagonists. Intracerebroventricular (ICV) injection of lipopolysaccharide (LPS, 50 microg) was used to induce neuro-inflammation in rats and estimations of pro-inflammatory cytokines, alpha7 nicotinic acetylcholine receptor (nAChR) mRNA expression were done in striatum, cerebral cortex, hippocampus and hypothalamus at 24 h after LPS injection. Nicotine (0.2, 0.4 and 0.8 mg/kg, i.p.) or oxotremorine (0.2, 0.4 and 0.8 mg/kg, i.p.) were administered 2 h prior to sacrifice. We found that only nicotine was able to block the proinflammatory cytokines induced by LPS whereas, oxotremorine was found ineffective. Methyllycaconitine (MLA; 1.25, 2.5 and 5 mg/kg, i.p.), an alpha7 nAChR antagonist or dihydro-beta-erythroidine (DHbetaE; 1.25, 2.5 and 5 mg/kg, i.p.), an alpha4beta2 nAChR antagonist, was given 20 min prior to nicotine in LPS-treated rats. Methyllycaconitine antagonized the anti-inflammatory effect of nicotine whereas DHbetaE showed no effect demonstrating that alpha7 nAChR is responsible for attenuation of LPS-induced pro-inflammatory cytokines. This study suggests that the inhibitory role of the central cholinergic system on neuro-inflammation is mediated via alpha7 nicotinic acetylcholine receptor and muscarinic receptors are not involved.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Encefalite/imunologia , Mediadores da Inflamação/metabolismo , Receptores Nicotínicos/metabolismo , Aconitina/administração & dosagem , Aconitina/análogos & derivados , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Citocinas/genética , Citocinas/imunologia , Di-Hidro-beta-Eritroidina/administração & dosagem , Encefalite/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Mediadores da Inflamação/imunologia , Lipopolissacarídeos/administração & dosagem , Neuroimunomodulação , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Oxotremorina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/imunologia , Receptor Nicotínico de Acetilcolina alfa7
17.
Neurochem Int ; 56(1): 135-42, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19781587

RESUMO

The present study was planned to investigate the effect of anti-cholinesterase drugs donepezil and neostigmine on neuroinflammation induced by intracerebroventricular administration of lipopolysaccharide (LPS, 50 microg) in rat. Proinflammatory cytokines (TNF-alpha and IL-1beta), expressions of iNOS and COX-2, acetylcholinesterase activity, malondialdehyde and reduced glutathione were studied in different brain regions at 24h of LPS injection. Donepezil was found to decrease the LPS-induced AChE activity and oxidative stress in all the brain regions. It also inhibited the LPS-induced proinflammatory cytokines and iNOS expression but did not affect the increased COX-2 expression whereas neostigmine treatment had no effect on LPS-induced proinflammatory cytokines. Methyllycaconitine (MLA), a alpha7 nicotinic acetylcholine receptor antagonist, significantly antagonized the donepezil mediated inhibition of LPS-induced proinflammatory cytokines, indicating that alpha7 nicotinic acetylcholine receptor subunit was playing a role in regulation of neuroinflammation. The phosphorylation of Akt, an effector of PI3K, increased with donepezil treatment. These results suggest that increased cholinergic activity in brain by donepezil prevents LPS-induced neuroinflammation via alpha7-nAChRs, followed by the PI3K-Akt pathway and this system may form the basis for the development of novel agents for reversing neuroinflammation or provide new indications for existing drugs.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Encefalite/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Inibidores da Colinesterase/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Donepezila , Encefalite/metabolismo , Encefalite/fisiopatologia , Glutationa/metabolismo , Indanos , Mediadores da Inflamação/farmacologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Malondialdeído/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Piperidinas , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
18.
Neuropharmacology ; 56(4): 779-87, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19705549

RESUMO

In the present study, role of brain insulin receptors (IRs) in memory functions and its correlation with acetylcholinesterase (AChE) activity and oxidative stress in different brain regions were investigated in intracerebroventricular (ICV) streptozotocin (STZ) induced dementia model. Rats were treated with STZ (3 mg/kg, ICV) on day 1 and 3. Donepezil (5 mg/kg po) and melatonin (20 mg/kg ip) were administered in pre- and post-treatment schedules. Morris water maze test was done on day 14 and animals were sacrificed on day 21 from 1st STZ injection. Memory deficit was found in STZ group as indicated by no significant decrease in latency time antagonized by donepezil and melatonin. IR protein level was found significantly increased in trained group as compared to control, whereas STZ decreased IR level significantly as compared to trained rats in hippocampus which indicates that IR is associated with memory functions. STZ induced decrease in IR was reversed by melatonin but not by donepezil. Melatonin per se did not show any significant change in IR level as compared to control. AChE activity (DS and SS fraction) was found to be increased in hippocampus in STZ group as compared to trained which was inhibited by donepezil and melatonin. Increase in MDA level and decrease in GSH level were obtained in STZ group indicating oxidative stress, which was attenuated by donepezil and melatonin. Effectiveness of antioxidant, melatonin but not of anti-cholinesterase, donepezil against STZ induced changes in IR indicates that IR is more affected with oxidative stress than cholinergic changes.


Assuntos
Acetilcolinesterase/metabolismo , Antibióticos Antineoplásicos/toxicidade , Química Encefálica/fisiologia , Demência/induzido quimicamente , Demência/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor de Insulina/metabolismo , Estreptozocina/toxicidade , Animais , Antibióticos Antineoplásicos/administração & dosagem , Biomarcadores , Glicemia/metabolismo , Western Blotting , Peso Corporal/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Demência/enzimologia , Donepezila , Eletroforese em Gel de Poliacrilamida , Glutationa/metabolismo , Indanos/farmacologia , Injeções Intraventriculares , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/efeitos dos fármacos , Estreptozocina/administração & dosagem
19.
Indian J Pharmacol ; 41(4): 192-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20523872

RESUMO

OBJECTIVES: The study was planned to determine cholinergic influence on different stages of memory - acquisition, consolidation and recall in scopolamine-induced amnesia (memory impairment) in mice. MATERIALS AND METHODS: To study acquision, consolidation and recall stages of memory, we administered scopolamine (0.75, 1.5 and 3 mg/kg ip) 30 minutes and five minutes prior to first trial acquisition and consolidation and 30 minutes prior to second trial recall of passive avoidance (PA) test, respectively, in separate groups. Tacrine (5 mg/kg po) and rivastigmine (5 mg/kg po) were administered one hour prior to first trial in separate groups which received scopolamine (3 mg/kg ip) 30 minutes and five minutes prior to first trial where as the control group received vehicle only. RESULTS: In the control group, there was a significant (P < 0.01) increase in transfer latency time (TLT) in the second trial compared to first indicating successful learning. In scopolamine treated groups, administering scopolamine 30 minutes or five minutes prior to first trial did not show any significant (P > 0.05) change in TLT whereas mice treated with scopolamine 30 minutes prior to second trial showed significant (P < 0.01) increase in TLT in second trial as compared to the first. Both tacrine and rivastigmine administration in scopolamine treated mice showed significant (P < 0.05-0.01) increase in TLT in second trial as compared to first trial while the rivastigmine treated group showed greater percentage retention compared to tacrine treated group. CONCLUSION: Results show that acquisition and consolidation are more susceptible to the scopolamine effects than recall. Thus, it may be concluded that cholinergic influence is more on acquisition and consolidation as compared to recall.

20.
Eur J Med Chem ; 44(1): 432-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18243423

RESUMO

In the course of our studies on the isolation of bioactive compounds from the roots of Moringa oleifera, a traditional herb in southeast Asia, rare aurantiamide acetate 4 and 1,3-dibenzyl urea 5 have been isolated and characterized. And also, this is the first report of isolation from this genus. Isolated compound inhibited the production of TNF-alpha and IL-2; further compound 5 showed significant analgesic activities in a dose dependant manner. These findings may help in understanding the mechanism of action of this traditional plant leading to control of activated mast cells on inflammatory conditions like arthritis, for which the crude extract has been used.


Assuntos
Analgésicos/síntese química , Anti-Inflamatórios/síntese química , Dipeptídeos/síntese química , Moringa oleifera/química , Ureia/síntese química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Dipeptídeos/farmacologia , Interleucina-2/antagonistas & inibidores , Mastócitos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Ratos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA