Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(39): 16293-16301, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34546729

RESUMO

Triazole linkages (TLs) are mimics of the phosphodiester bond in oligonucleotides with applications in synthetic biology and biotechnology. Here we report the RuAAC-catalyzed synthesis of a novel 1,5-disubstituted triazole (TL2) dinucleoside phosphoramidite as well as its incorporation into oligonucleotides and compare its DNA polymerase replication competency with other TL analogues. We demonstrate that TL2 has superior replication kinetics to these analogues and is accurately replicated by polymerases. Derived structure-biocompatibility relationships show that linker length and the orientation of a hydrogen bond acceptor are critical and provide further guidance for the rational design of artificial biocompatible nucleic acid backbones.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , Triazóis/química , Catálise , Fosfatos de Dinucleosídeos/química , Mimetismo Molecular
2.
J Am Chem Soc ; 139(4): 1575-1583, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28097865

RESUMO

The molecular properties of the phosphodiester backbone that made it the evolutionary choice for the enzymatic replication of genetic information are not well understood. To address this, and to develop new chemical ligation strategies for assembly of biocompatible modified DNA, we have synthesized oligonucleotides containing several structurally and electronically varied artificial linkages. This has yielded a new highly promising ligation method based on amide backbone formation that is chemically orthogonal to CuAAC "click" ligation. A study of kinetics and fidelity of replication through these artificial linkages by primer extension, PCR, and deep sequencing reveals that a subtle interplay between backbone flexibility, steric factors, and ability to hydrogen bond to the polymerase modulates rapid and accurate information decoding. Even minor phosphorothioate modifications can impair the copying process, yet some radical triazole and amide DNA backbones perform surprisingly well, indicating that the phosphate group is not essential. These findings have implications in the field of synthetic biology.


Assuntos
DNA/química , Ésteres/química , Oligonucleotídeos/química , Triazóis/química , DNA/genética , Replicação do DNA , Elétrons , Cinética , Oligonucleotídeos/síntese química , Reação em Cadeia da Polimerase , Triazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA