Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 13(7): 1165-1171, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35859878

RESUMO

We describe the synthesis of triazole-containing carboline derivatives and their utility as bromodomain and extra-terminal (BET) inhibitors. A convergent synthetic route permitted the detailed investigation of deuteration and fluorination strategies to reduce clearance while maintaining a favorable in vitro profile. This work led to the identification of a potent BET inhibitor, 2-{8-fluoro-3-[4-(2H3)methyl-1-methyl-1H-1,2,3-triazol-5-yl]-5-[(S)-(oxan-4-yl)(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl}propan-2-ol (15), which demonstrated reduced clearance and an improved pharmacokinetic (PK) profile across preclinical species. Importantly, no major metabolite was observed when 15 was incubated with human hepatocytes (hHEP) for 2 h. This study culminated with the evaluation of 15 in a mouse triple-negative breast cancer (TNBC) tumor model where it demonstrated robust efficacy at low doses.

2.
J Med Chem ; 64(19): 14247-14265, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34543572

RESUMO

Inhibition of the bromodomain and extra-terminal (BET) family of adaptor proteins is an attractive strategy for targeting transcriptional regulation of key oncogenes, such as c-MYC. Starting with the screening hit 1, a combination of structure-activity relationship and protein structure-guided drug design led to the discovery of a differently oriented carbazole 9 with favorable binding to the tryptophan, proline, and phenylalanine (WPF) shelf conserved in the BET family. Identification of an additional lipophilic pocket and functional group optimization to optimize pharmacokinetic (PK) properties culminated in the discovery of 18 (BMS-986158) with excellent potency in binding and functional assays. On the basis of its favorable PK profile and robust in vivo activity in a panel of hematologic and solid tumor models, BMS-986158 was selected as a candidate for clinical evaluation.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Descoberta de Drogas , Fenilalanina/farmacologia , Prolina/farmacologia , Triptofano/farmacologia , Administração Oral , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Carbazóis/administração & dosagem , Carbazóis/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fenilalanina/administração & dosagem , Fenilalanina/química , Prolina/administração & dosagem , Prolina/química , Relação Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Triptofano/administração & dosagem , Triptofano/química
3.
Bioorg Med Chem Lett ; 44: 128108, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991625

RESUMO

We describe our efforts to identify structurally diverse leads in the triazole-containing N1-carboline series of bromodomain and extra-terminal inhibitors. Replacement of the N5 "cap" phenyl moiety with various heteroaryls, coupled with additional modifications to the carboline core, provided analogs with similar potency, improved pharmacokinetic properties, and increased solubility compared to our backup lead, BMS-986225 (2). Rapid SAR exploration was enabled by a convergent, synthetic route. These efforts provided a potent BET inhibitor, 3-fluoropyridyl 12, that demonstrated robust efficacy in a multiple myeloma mouse tumor model at 1 mg/kg.


Assuntos
Antineoplásicos/farmacologia , Carbolinas/farmacologia , Desenvolvimento de Medicamentos , Mieloma Múltiplo/dietoterapia , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Carbolinas/síntese química , Carbolinas/química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Proteínas/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
4.
Int J Pharm ; 514(2): 364-373, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27291974

RESUMO

A comprehensive 8-drug metabolic cocktail was designed to simultaneously target 6 Cytochrome P450 enzymes and 2 membrane transporters. This study aimed to assess the pre-absorption risk of this new metabolic cocktail which contained metoprolol, caffeine, midazolam, pravastatin, flurbiprofen, omeprazole, digoxin and montelukast. This paper describes a systematic approach to understand whether the co-administration of the 8 selected drug products, i.e., the physical mixing of these products in the human gastro-intestinal environment, will create any issue that may interfere with the individual drug dissolution which in turns modify the total amount or timing of their availability for absorption. The evaluation consisted of two steps. An initial evaluation was based on theoretical understanding of the physicochemical properties of the drugs and the gastro intestinal environment, followed by in vitro dissolution tests. The results indicated that the designer 8-drug cocktail has acceptable pre-absorption compatibility when dosed simultaneously, and recommended the progression of the cocktail into clinical validation study.


Assuntos
Combinação de Medicamentos , Interações Medicamentosas , Fenômenos Químicos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio
5.
J Pharm Sci ; 94(3): 465-72, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15696587

RESUMO

It is well known that compression speed can have significant effects on the compaction properties of pharmaceutical powders. This is a challenge during scale up and technology transfer when tableting speeds are significantly increased. This study examined the effects of tableting speed on the compressibility (solid fraction vs. compaction pressure), tabletability (tensile strength vs. compaction pressure), and compactibility (tensile strength vs. solid fraction) of four common direct compression excipients and a placebo formulation. The tabletability and compressibility of some of these materials were observed to be speed dependent whereas the compactibility of all materials tested was essentially independent of tableting speed. It is therefore proposed that the compactibility profile (tensile strength vs. solid fraction) is a predictor that is independent of tableting speed and can be used to predict tablet strength during formulation development and scale up.


Assuntos
Comprimidos/síntese química , Força Compressiva , Porosidade , Resistência à Tração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA