RESUMO
BACKGROUND: Immune checkpoint inhibitors (ICIs) have improved outcomes and extended patient survival in several tumor types. However, ICIs often induce immune-related adverse events (irAEs) that warrant therapy cessation, thereby limiting the overall effectiveness of this class of therapeutic agents. Currently, available therapies used to treat irAEs might also blunt the antitumor activity of the ICI themselves. Therefore, there is an urgent need to identify treatments that have the potential to be administered alongside ICI to optimize their use. METHODS: Using a translationally relevant murine model of anti-PD-1 and anti-CTLA-4 antibodies-induced irAEs, we compared the safety and efficacy of prednisolone, anti-IL-6, anti-TNFÉ, anti-IL-25 (IL-17E), and anti-IL-17RA (the receptor for IL-25) administration to prevent irAEs and to reduce tumor size. RESULTS: While all interventions were adequate to inhibit the onset of irAEs pneumonitis and hepatitis, treatment with anti-IL-25 or anti-IL-17RA antibodies also exerted additional antitumor activity. Mechanistically, IL-25/IL-17RA blockade reduced the number of organ-infiltrating lymphocytes. CONCLUSION: These findings suggest that IL-25/IL-17RA may serve as an additional target when treating ICI-responsive tumors, allowing for better tumor control while suppressing immune-related toxicities.
Assuntos
Neoplasias , Humanos , Animais , Camundongos , Ipilimumab/uso terapêutico , Imunoterapia/efeitos adversos , Fator de Necrose Tumoral alfaRESUMO
MHC-II is known to be mainly expressed on the surface of antigen-presenting cells. Evidence suggests MHC-II is also expressed by cancer cells and may be associated with better immunotherapy responses. However, the role and regulation of MHC-II in cancer cells remain unclear. In this study, we leveraged data mining and experimental validation to elucidate the regulation of MHC-II in cancer cells and its role in modulating the response to immunotherapy. We collated an extensive collection of omics data to examine cancer cell-intrinsic MHC-II expression and its association with immunotherapy outcomes. We then tested the functional relevance of cancer cell-intrinsic MHC-II expression using a syngeneic transplantation model. Finally, we performed data mining to identify pathways potentially involved in the regulation of MHC-II expression, and experimentally validated candidate regulators. Analyses of preimmunotherapy clinical samples in the CheckMate 064 trial revealed that cancer cell-intrinsic MHC-II protein was positively correlated with more favorable immunotherapy outcomes. Comprehensive meta-analyses of multiomics data from an exhaustive collection of data revealed that MHC-II is heterogeneously expressed in various solid tumors, and its expression is particularly high in melanoma. Using a syngeneic transplantation model, we further established that melanoma cells with high MHC-II responded better to anti-PD-1 treatment. Data mining followed by experimental validation revealed the Hippo signaling pathway as a potential regulator of melanoma MHC-II expression. In summary, we identified the Hippo signaling pathway as a novel regulator of cancer cell-intrinsic MHC-II expression. These findings suggest modulation of MHC-II in melanoma could potentially improve immunotherapy response.
Assuntos
Via de Sinalização Hippo , Melanoma , Humanos , Melanoma/tratamento farmacológico , Imunoterapia , Células Apresentadoras de Antígenos/metabolismoRESUMO
Mucus barriers accommodate trillions of microorganisms throughout the human body while preventing pathogenic colonization1. In the oral cavity, saliva containing the mucins MUC5B and MUC7 forms a pellicle that coats the soft tissue and teeth to prevent infection by oral pathogens, such as Streptococcus mutans2. Salivary mucin can interact directly with microorganisms through selective agglutinin activity and bacterial binding2-4, but the extent and basis of the protective functions of saliva are not well understood. Here, using an ex vivo saliva model, we identify that MUC5B is an inhibitor of microbial virulence. Specifically, we find that natively purified MUC5B downregulates the expression of quorum-sensing pathways activated by the competence stimulating peptide and the sigX-inducing peptide5. Furthermore, MUC5B prevents the acquisition of antimicrobial resistance through natural genetic transformation, a process that is activated through quorum sensing. Our data reveal that the effect of MUC5B is mediated by its associated O-linked glycans, which are potent suppressors of quorum sensing and genetic transformation, even when removed from the mucin backbone. Together, these results present mucin O-glycans as a host strategy for domesticating potentially pathogenic microorganisms without killing them.
Assuntos
Cárie Dentária/metabolismo , Mucina-5B/metabolismo , Polissacarídeos/metabolismo , Percepção de Quorum , Streptococcus mutans/fisiologia , Cárie Dentária/genética , Cárie Dentária/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Mucina-5B/química , Mucina-5B/genética , Polissacarídeos/química , Saliva/metabolismo , Saliva/microbiologia , Streptococcus mutans/genética , Streptococcus mutans/patogenicidade , Transformação Bacteriana , VirulênciaRESUMO
Introduction: The emergence of a novel coronavirus, SARS-CoV-2, has highlighted the need for rapid, accurate, and point-of-care diagnostic testing. As of now, there is not enough testing capacity in the world to meet the stated testing targets, which are expected to skyrocket globally for broader testing during reopening. Aim: This review focuses on the development of lab-on-chip biosensing platforms for diagnosis of COVID-19 infection. Results: We discuss advantages of utilizing lab-on-chip technologies in response to the current global pandemic, including their potential for low-cost, rapid sample-to-answer processing times, and ease of integration into a range of healthcare settings. We then highlight the development of magnetic, colorimetric, plasmonic, electrical, and lateral flow-based lab-on-chip technologies for the detection of SARS-CoV-2, in addition to other viruses. We focus on rapid, point-of-care technologies that can be deployed at scale, as such devices could be promising alternatives to the current gold standard of reverse transcription-polymerase chain reaction (RT-PCR) diagnostic testing. Conclusion: This review is intended to provide an overview of the current state-of-the-field and serve as a resource for innovative development of new lab-on-chip assays for COVID-19 detection.