RESUMO
In this work, a flexible textile-based capacitive respiratory sensor, based on a capacitive sensor structure, that does not require direct skin contact is designed, optimised, and evaluated using both computational modelling and empirical measurements. In the computational study, the geometry of the sensor was examined. This analysis involved observing the capacitance and frequency variations using a cylindrical model that mimicked the human body. Four designs were selected which were then manufactured by screen printing multiple functional layers on top of a polyester/cotton fabric. The printed sensors were characterised to detect the performance against phantoms and impacts from artefacts, normally present whilst wearing the device. A sensor that has an electrode ratio of 1:3:1 (sensor, reflector, and ground) was shown to be the most sensitive design, as it exhibits the highest sensitivity of 6.2% frequency change when exposed to phantoms. To ensure the replicability of the sensors, several batches of identical sensors were developed and tested using the same physical parameters, which resulted in the same percentage frequency change. The sensor was further tested on volunteers, showing that the sensor measures respiration with 98.68% accuracy compared to manual breath counting.
Assuntos
Respiração , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Têxteis , Eletrodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodosRESUMO
Two-dimensional (2D) transition-metal dichalcogenides have shown great potential for energy storage applications owing to their interlayer spacing, large surface area-to-volume ratio, superior electrical properties, and chemical compatibility. Further, increasing the surface area of such materials can lead to enhanced electrical, chemical, and optical response for energy storage and generation applications. Vertical silicon nanowires (SiNWs), also known as black-Si, are an ideal substrate for 2D material growth to produce high surface-area heterostructures, owing to their ultrahigh aspect ratio. Achieving this using an industrially scalable method paves the way for next-generation energy storage devices, enabling them to enter commercialization. This work demonstrates large surface area, commercially scalable, hybrid MoS2/SiNW heterostructures, as confirmed by Raman spectroscopy, with high tunability of the MoS2 layers down to the monolayer scale and conformal MoS2 growth, parallel to the silicon nanowires, as verified by transmission electron microscopy (TEM). This has been achieved using a two-step atomic layer deposition (ALD) process, allowing MoS2 to be grown directly onto the silicon nanowires without any damage to the substrate. The ALD cycle number accurately defines the layer number from monolayer to bulk. Introducing an ALD alumina (Al2O3) interface at the MoS2/SiNW boundary results in enhanced MoS2 quality and uniformity, demonstrated by an order of magnitude reduction in the B/A exciton photoluminescence (PL) intensity ratio to 0.3 and a reduction of the corresponding layer number. This high-quality layered growth on alumina can be utilized in applications such as for interfacial layers in high-capacity batteries or for photocathodes for water splitting. The alumina-free 100 ALD cycle heterostructures demonstrated no diminishing quality effects, lending themselves well to applications that require direct electrical contact with silicon and benefit from more layers, such as electrodes for high-capacity ion batteries.
RESUMO
Black silicon nanotextures offer significant optical performance improvements when applied to crystalline silicon solar cells. Coupled with conventional pyramidal textures, to create so-called hybrid black silicon, these benefits are shown to be further enhanced. Presented here is a comprehensive analysis of different variations of this texture, coupled with typical anti-reflectance schemes such as coated pyramids, with a view to the significance of this on subsequent, real-world, solar energy generation. The study uses an angle-resolved spectrophometry system to characterise and compare the optical properties of these surface textures in terms of reflectance versus wavelength and incident angle, with and without encapsulant layers. This analysis, coupled with time-resolved, location specific irradiance data, leads to a new figure-of-merit, the weighted reflectivity, with which to compare surface textures for use in solar cells. Weighted reflectivity for an encapsulated solar cell surface, averaged over a year, for a Southampton, UK, location is calculated to be 7.6% for hybrid black silicon, compared to 10.6% for traditional random pyramids with a thin film anti-reflective coating.