Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Angew Chem Int Ed Engl ; 63(14): e202319157, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339863

RESUMO

Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.


Assuntos
Fibroblastos , Inflamação , Humanos , Fibroblastos/metabolismo , Inflamação/metabolismo , Hipóxia/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo
2.
Comput Struct Biotechnol J ; 21: 5382-5393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022693

RESUMO

Analysis and interpretation of high-throughput transcriptional and chromatin accessibility data at single-cell (sc) resolution are still open challenges in the biomedical field. The existence of countless bioinformatics tools, for the different analytical steps, increases the complexity of data interpretation and the difficulty to derive biological insights. In this article, we present SCALA, a bioinformatics tool for analysis and visualization of single-cell RNA sequencing (scRNA-seq) and Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) datasets, enabling either independent or integrative analysis of the two modalities. SCALA combines standard types of analysis by integrating multiple software packages varying from quality control to the identification of distinct cell populations and cell states. Additional analysis options enable functional enrichment, cellular trajectory inference, ligand-receptor analysis, and regulatory network reconstruction. SCALA is fully parameterizable, presenting data in tabular format and producing publication-ready visualizations. The different available analysis modules can aid biomedical researchers in exploring, analyzing, and visualizing their data without any prior experience in coding. We demonstrate the functionality of SCALA through two use-cases related to TNF-driven arthritic mice, handling both scRNA-seq and scATAC-seq datasets. SCALA is developed in R, Shiny and JavaScript and is mainly available as a standalone version, while an online service of more limited capacity can be found at http://scala.pavlopouloslab.info or https://scala.fleming.gr.

3.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014697

RESUMO

Synovial fibroblasts (SFs) are key pathogenic drivers in rheumatoid arthritis (RA). Their in vivo activation by TNF is sufficient to orchestrate full arthritic pathogenesis in animal models, and TNF blockade proved efficacious for a high percentage of patients with RA albeit coinducing rare but serious side effects. Aiming to find new potent therapeutics, we applied the L1000CDS2 search engine, to repurpose drugs that could reverse the pathogenic expression signature of arthritogenic human TNF-transgenic (hTNFtg) SFs. We identified a neuroleptic drug, namely amisulpride, which reduced SFs' inflammatory potential while decreasing the clinical score of hTNFtg polyarthritis. Notably, we found that amisulpride function was neither through its known targets dopamine receptors D2 and D3 and serotonin receptor 7 nor through TNF-TNF receptor I binding inhibition. Through a click chemistry approach, potentially novel targets of amisulpride were identified, which were further validated to repress hTNFtg SFs' inflammatory potential ex vivo (Ascc3 and Sec62), while phosphoproteomics analysis revealed that treatment altered important fibroblast activation pathways, such as adhesion. Thus, amisulpride could prove beneficial to patients experiencing RA and the often-accompanying comorbid dysthymia, reducing SF pathogenicity along with its antidepressive activity, serving further as a "lead" compound for the development of novel therapeutics against fibroblast activation.


Assuntos
Antipsicóticos , Artrite Reumatoide , Animais , Humanos , Membrana Sinovial/metabolismo , Antipsicóticos/farmacologia , Amissulprida/farmacologia , Reposicionamento de Medicamentos , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , DNA Helicases/metabolismo
4.
Genome Med ; 14(1): 78, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879783

RESUMO

BACKGROUND: Synovial fibroblasts (SFs) are specialized cells of the synovium that provide nutrients and lubricants for the proper function of diarthrodial joints. Recent evidence appreciates the contribution of SF heterogeneity in arthritic pathologies. However, the normal SF profiles and the molecular networks that govern the transition from homeostatic to arthritic SF heterogeneity remain poorly defined. METHODS: We applied a combined analysis of single-cell (sc) transcriptomes and epigenomes (scRNA-seq and scATAC-seq) to SFs derived from naïve and hTNFtg mice (mice that overexpress human TNF, a murine model for rheumatoid arthritis), by employing the Seurat and ArchR packages. To identify the cellular differentiation lineages, we conducted velocity and trajectory analysis by combining state-of-the-art algorithms including scVelo, Slingshot, and PAGA. We integrated the transcriptomic and epigenomic data to infer gene regulatory networks using ArchR and custom-implemented algorithms. We performed a canonical correlation analysis-based integration of murine data with publicly available datasets from SFs of rheumatoid arthritis patients and sought to identify conserved gene regulatory networks by utilizing the SCENIC algorithm in the human arthritic scRNA-seq atlas. RESULTS: By comparing SFs from healthy and hTNFtg mice, we revealed seven homeostatic and two disease-specific subsets of SFs. In healthy synovium, SFs function towards chondro- and osteogenesis, tissue repair, and immune surveillance. The development of arthritis leads to shrinkage of homeostatic SFs and favors the emergence of SF profiles marked by Dkk3 and Lrrc15 expression, functioning towards enhanced inflammatory responses and matrix catabolic processes. Lineage inference analysis indicated that specific Thy1+ SFs at the root of trajectories lead to the intermediate Thy1+/Dkk3+/Lrrc15+ SF states and culminate in a destructive and inflammatory Thy1- SF identity. We further uncovered epigenetically primed gene programs driving the expansion of these arthritic SFs, regulated by NFkB and new candidates, such as Runx1. Cross-species analysis of human/mouse arthritic SF data determined conserved regulatory and transcriptional networks. CONCLUSIONS: We revealed a dynamic SF landscape from health to arthritis providing a functional genomic blueprint to understand the joint pathophysiology and highlight the fibroblast-oriented therapeutic targets for combating chronic inflammatory and destructive arthritic disease.


Assuntos
Artrite Reumatoide , Análise de Célula Única , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
5.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029648

RESUMO

A key unknown of the functional space in tumor immunity is whether CD4 T cells depend on intratumoral MHCII cancer antigen recognition. MHCII-expressing, antigen-presenting cancer-associated fibroblasts (apCAFs) have been found in breast and pancreatic tumors and are considered to be immunosuppressive. This analysis shows that antigen-presenting fibroblasts are frequent in human lung non-small cell carcinomas, where they seem to actively promote rather than suppress MHCII immunity. Lung apCAFs directly activated the TCRs of effector CD4 T cells and at the same time produced C1q, which acted on T cell C1qbp to rescue them from apoptosis. Fibroblast-specific MHCII or C1q deletion impaired CD4 T cell immunity and accelerated tumor growth, while inducing C1qbp in adoptively transferred CD4 T cells expanded their numbers and reduced tumors. Collectively, we have characterized in the lungs a subset of antigen-presenting fibroblasts with tumor-suppressive properties and propose that cancer immunotherapies might be strongly dependent on in situ MHCII antigen presentation.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Fibroblastos Associados a Câncer/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Neoplasias Pulmonares/imunologia , Animais , Apoptose , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ativação Linfocitária , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Proteínas Mitocondriais/metabolismo , Análise de Célula Única , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Microambiente Tumoral/imunologia
6.
Cell Mol Life Sci ; 79(1): 1, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910257

RESUMO

Intestinal mesenchymal cells encompass multiple subsets, whose origins, functions, and pathophysiological importance are still not clear. Here, we used the Col6a1Cre mouse, which targets distinct fibroblast subsets and perivascular cells that can be further distinguished by the combination of the CD201, PDGFRα and αSMA markers. Developmental studies revealed that the Col6a1Cre mouse also targets mesenchymal aggregates that are crucial for intestinal morphogenesis and patterning, suggesting an ontogenic relationship between them and homeostatic PDGFRαhi telocytes. Cell depletion experiments in adulthood showed that Col6a1+/CD201+ mesenchymal cells regulate homeostatic enteroendocrine cell differentiation and epithelial proliferation. During acute colitis, they expressed an inflammatory and extracellular matrix remodelling gene signature, but they also retained their properties and topology. Notably, both in homeostasis and tissue regeneration, they were dispensable for normal organ architecture, while CD34+ mesenchymal cells expanded, localised at the top of the crypts, and showed increased expression of villous-associated morphogenetic factors, providing thus evidence for the plasticity potential of intestinal mesenchymal cells. Our results provide a comprehensive analysis of the identities, origin, and functional significance of distinct mesenchymal populations in the intestine.


Assuntos
Colágeno Tipo VI/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Intestinos/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Plasticidade Celular , Proliferação de Células , Colite/induzido quimicamente , Colite/patologia , Colágeno Tipo VI/deficiência , Colágeno Tipo VI/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Intestinos/citologia , Intestinos/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Regeneração
7.
Cell Rep ; 26(3): 536-545.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650348

RESUMO

MyD88, an adaptor molecule downstream of innate pathways, plays a significant tumor-promoting role in sporadic intestinal carcinogenesis of the Apcmin/+ model, which carries a mutation in the Apc gene. Here, we show that deletion of MyD88 in intestinal mesenchymal cells (IMCs) significantly reduces tumorigenesis in this model. This phenotype is associated with decreased epithelial cell proliferation, altered inflammatory and tumorigenic immune cell infiltration, and modified gene expression similar to complete MyD88 knockout mice. Genetic deletion of TLR4, but not interleukin-1 receptor (IL-1R), in IMCs led to altered molecular profiles and reduction of intestinal tumors similar to the MyD88 deficiency. Ex vivo analysis in IMCs indicated that these effects could be mediated through downstream signals involving growth factors and inflammatory and extracellular matrix (ECM)-regulating genes, also found in human cancer-associated fibroblasts (CAFs). Our results provide direct evidence that during tumorigenesis, IMCs and CAFs are activated by innate TLR4/MyD88-mediated signals and promote carcinogenesis in the intestine.


Assuntos
Intestinos/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Carcinogênese , Humanos , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA