Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Nat Genet ; 29(1): 57-60, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11528392

RESUMO

Complex III (CIII; ubiquinol cytochrome c reductase of the mitochondrial respiratory chain) catalyzes electron transfer from succinate and nicotinamide adenine dinucleotide-linked dehydrogenases to cytochrome c. CIII is made up of 11 subunits, of which all but one (cytochrome b) are encoded by nuclear DNA. CIII deficiencies are rare and manifest heterogeneous clinical presentations. Although pathogenic mutations in the gene encoding mitochondrial cytochrome b have been described, mutations in the nuclear-DNA-encoded subunits have not been reported. Involvement of various genes has been indicated in assembly of yeast CIII (refs. 8-11). So far only one such gene, BCS1L, has been identified in human. BCS1L represents, therefore, an obvious candidate gene in CIII deficiency. Here, we report BCS1L mutations in six patients, from four unrelated families and presenting neonatal proximal tubulopathy, hepatic involvement and encephalopathy. Complementation study in yeast confirmed the deleterious effect of these mutations. Mutation of BCS1L would seem to be a frequent cause of CIII deficiency, as one-third of our patients have BCS1L mutations.


Assuntos
Encefalopatias/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Transporte de Elétrons , Túbulos Renais Proximais/patologia , Falência Hepática/genética , Mitocôndrias/genética , Mutação , Proteínas/genética , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Animais , Sequência de Bases , Encefalopatias/patologia , Feminino , Humanos , Recém-Nascido , Falência Hepática/patologia , Masculino , Dados de Sequência Molecular , Proteínas/química , Homologia de Sequência de Aminoácidos
2.
FEBS Lett ; 492(1-2): 133-8, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11248251

RESUMO

Cox15p is essential for the biogenesis of cytochrome oxidase [Glerum et al., J. Biol. Chem. 272 (1997) 19088-19094]. We show here that cox15 mutants are blocked in heme A but not heme O biosynthesis. In Schizosaccharomyces pombe COX15 is fused to YAH1, the yeast gene for mitochondrial ferredoxin (adrenodoxin). A fusion of Cox15p and Yah1p in Saccharomyces cerevisiae rescued both cox15 and yah1 null mutants. This suggests that Yah1p functions in concert with Cox15p. We propose that Cox15p functions together with Yah1p and its putative reductase (Arh1p) in the hydroxylation of heme O.


Assuntos
Adrenodoxina , Proteínas de Bactérias , Ferredoxinas/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sistema Enzimático do Citocromo P-450/metabolismo , Grupo dos Citocromos b/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Heme/análogos & derivados , Hidroxilação , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Oxirredução , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
3.
Mol Cell ; 5(4): 629-38, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10882099

RESUMO

Two AAA proteases, each with its catalytic site at the opposite membrane surface, mediate the ATP-dependent degradation of mitochondrial inner membrane proteins. We demonstrate here that a model substrate polypeptide containing hydrophilic domains at both sides of the membrane can be completely degraded by either of the AAA proteases, if solvent-exposed domains are in an unfolded state. A short protein tail protruding from the membrane surface is sufficient to allow the proteolytic attack of an AAA protease that facilitates domain unfolding at the opposite side. Our results provide a rationale for the membrane arrangement of AAA proteases in mitochondria and demonstrate that degradation of membrane proteins by AAA proteases involves an active extraction of transmembrane segments and transport of solvent-exposed domains across the membrane.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Proteínas Fúngicas/metabolismo , Membranas Intracelulares/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Especificidade por Substrato , Leveduras
4.
J Biol Chem ; 275(38): 29238-43, 2000 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-10867012

RESUMO

In an earlier study, the ATP10 gene of Saccharomyces cerevisiae was shown to code for an inner membrane protein required for assembly of the F(0) sector of the mitochondrial ATPase complex (Ackerman, S., and Tzagoloff, A. (1990) J. Biol. Chem. 265, 9952-9959). To gain additional insights into the function of Atp10p, we have analyzed a revertant of an atp10 null mutant that displays partial recovery of oligomycin-sensitive ATPase and of respiratory competence. The suppressor mutation in the revertant has been mapped to the OLI2 locus in mitochondrial DNA and shown to be a single base change in the C-terminal coding region of the gene. The mutation results in the substitution of a valine for an alanine at residue 249 of subunit 6 of the ATPase. The ability of the subunit 6 mutation to compensate for the absence of Atp10p implies a functional interaction between the two proteins. Such an interaction is consistent with evidence indicating that the C-terminal region with the site of the mutation and the extramembrane domain of Atp10p are both on the matrix side of the inner membrane. Subunit 6 has been purified from the parental wild type strain, from the atp10 null mutant, and from the revertant. The N-terminal sequences of the three proteins indicated that they all start at Ser(11), the normal processing site of the subunit 6 precursor. Mass spectral analysis of the wild type and mutants subunit 6 failed to reveal any substantive difference of the wild type and mutant proteins when the mass of the latter was corrected for Ala --> Val mutation. These data argue against a role of Atp10p in post-translational modification of subunit 6. Although post-translational modification of another ATPase subunit interacting with subunit 6 cannot be excluded, a more likely function for Atp10p is that it acts as a subunit 6 chaperone during F(0) assembly.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Transporte Biológico , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Saccharomyces cerevisiae/ultraestrutura
5.
J Biol Chem ; 275(20): 14898-902, 2000 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-10809734

RESUMO

Nuclear mutants of Saccharomyces cerevisiae assigned to complementation group G34 are respiratory-deficient and lack cytochrome oxidase activity and the characteristic spectral peaks of cytochromes a and a(3). The corresponding gene was cloned by complementation, sequenced, and identified as reading frame YGR062C on chromosome VII. This gene was named COX18. The COX18 gene product is a polypeptide of 316 amino acids with a putative amino-terminal mitochondrial targeting sequence and predicted transmembrane domains. Respiratory chain carriers other than cytochromes a and a(3) and the ATPase complex are present at near wild-type levels in cox18 mutants, indicating that the mutations specifically affect cytochrome oxidase. The synthesis of Cox1p and Cox3p in mutant mitochondria is normal whereas Cox2p is barely detected among labeled mitochondrial polypeptides. Transcription of COX2 does not require COX18 function, and a chimeric COX3-COX2 mRNA did not suppress the respiratory defect in the null mutant, indicating that the mutation does not impair transcription or translation of the mRNA. Western analysis of cytochrome oxidase subunits shows that inactivation of the COX18 gene greatly reduces the steady state amounts of subunit 2 and results in variable decreases in other subunits of cytochrome oxidase. A gene fusion expressing a biotinylated form of Cox18p complements cox18 mutants. Biotinylated Cox18p is a mitochondrial integral membrane protein. These results indicate Cox18p to be a new member of a group of mitochondrial proteins that function at a late stage of the cytochrome oxidase assembly pathway.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos Fúngicos , Clonagem Molecular , Genótipo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais , Dados de Sequência Molecular , Fenótipo , Mapeamento por Restrição , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
6.
Hum Mol Genet ; 9(8): 1245-9, 2000 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10767350

RESUMO

Cytochrome c oxidase (COX) defects are found in a clinically and genetically heterogeneous group of mitochondrial disorders. To date, mutations in only two nuclear genes causing COX deficiency have been described. We report here a genetic linkage study of a consanguineous family with an isolated COX defect and subsequent identification of a mutation in a third nuclear gene causing a deficiency of the enzyme. A genome-wide search for homozygosity allowed us to map the disease gene to chromosome 17p13.1-q11.1 (Z (max)= 2.46; theta = 0.00 at the locus D17S799). This region encompasses two genes, SCO1 and COX10, encoding proteins involved in COX assembly. Mutation analysis followed by a complementation study in yeast permitted us to ascribe the COX deficiency to a homozygous missense mutation in the COX10 gene. This gene encodes heme A:farnesyltransferase, which catalyzes the first step in the conversion of protoheme to the heme A prosthetic groups of the enzyme. All three nuclear genes now linked to isolated COX deficiency are involved in the maturation and assembly of COX, emphasizing the major role of such genes in COX pathology.


Assuntos
Anormalidades Múltiplas/genética , Alquil e Aril Transferases/genética , Cromossomos Humanos Par 17 , Deficiência de Citocromo-c Oxidase , Proteínas de Membrana/genética , Mutação Puntual , Proteínas de Saccharomyces cerevisiae , Substituição de Aminoácidos , Sequência de Bases , Pré-Escolar , Mapeamento Cromossômico , Consanguinidade , Análise Mutacional de DNA , Primers do DNA , Complexo IV da Cadeia de Transporte de Elétrons , Éxons , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae
7.
J Biol Chem ; 275(7): 4571-8, 2000 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-10671482

RESUMO

We have identified Cox20p, a 23.8-kDa protein of the mitochondrial inner membrane that is involved in the biogenesis of the yeast cytochrome oxidase complex. Cytochrome oxidase subunit 2 (Cox2p) accumulates as a precursor in cox20 mutants, suggesting a defect in biogenesis of this mitochondrially encoded protein. The inability of cox20 mutants to process the subunit 2 precursor (pCox2p) is not due to impaired export of the protein across the inner membrane or to an inactive Imp1p/Imp2p peptidase. Rather, Cox20p specifically binds the newly synthesized pCox2p, a step required to present the exported pCox2p as a substrate to the Imp1p peptidase. All of the endogenous pCox2p accumulated in an Deltaimp1 mutant, and a small fraction of Cox2p in wild type yeast, is detected in a complex with Cox20p. Following maturation Cox2p remained associated with Cox20p, prior to assembling into the cytochrome oxidase complex. We propose that Cox20p acts as a membrane-bound chaperone necessary for cleavage of pCox2p and for interaction of the mature protein with other subunits of cytochrome oxidase in a later step of the assembly process.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/química , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Complexo IV da Cadeia de Transporte de Elétrons/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 273(43): 27945-52, 1998 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-9774408

RESUMO

Mutations in MTO1 express a respiratory defect only in the context of a mitochondrial genome with a paromomycin-resistance allele. This phenotype is similar to that described previously for mss1 mutants by Decoster, E., Vassal, A., and Faye, G. (1993) J. Mol. Biol. 232, 79-88. We present evidence that Mto1p and Mss1p are mitochondrial proteins and that they form a heterodimer complex. In a paromomycin-resistant background, mss1 and mto1 mutants are inefficient in processing the mitochondrial COX1 transcript for subunit 1 of cytochrome oxidase. The mutants also fail to synthesize subunit 1 and show a pleiotropic absence of cytochromes a, a3, and b. In vivo pulse labeling of an mto1 mutant, however, indicate increased rates of synthesis of other mitochondrial translation products. The respiratory defective phenotype of mto1 and mss1 mutants is not seen in a paromomycin-sensitive genetic background. The visible absorption spectra of such strains indicate a higher ratio of cytochromes b/a and elevated NADH- and succinate-cytochrome c reductase activities. To explain these phenotypic characteristics, we proposed that the Mto1p.Mss1p complex plays a role in optimizing mitochondrial protein synthesis in yeast, possibly by a proofreading mechanism.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação ao GTP , Mitocôndrias/genética , Consumo de Oxigênio/genética , Paromomicina/farmacologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Antibacterianos/farmacologia , Proteínas de Transporte/genética , Compartimento Celular , Clonagem Molecular , Grupo dos Citocromos a/análise , Grupo dos Citocromos b/análise , DNA Mitocondrial/genética , Resistência Microbiana a Medicamentos , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , GTP Fosfo-Hidrolases/genética , Genes Fúngicos , Teste de Complementação Genética , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais , NADH Desidrogenase/análise , Fenótipo , Ligação Proteica , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/efeitos dos fármacos , Análise de Sequência de DNA , Succinato Citocromo c Oxirredutase/análise
9.
Yeast ; 14(11): 1001-6, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9730279

RESUMO

Transformation of the respiratory-defective mutant (E264/U2) of Saccharomyces cerevisiae with a yeast genomic library yielded two different plasmids capable of restoring the ability of the mutant to grow on non-fermentable substrates. One of the plasmids (pG52/T3) contained SDH1 coding for the flavoprotein subunit of mitochondrial succinate dehydrogenase. The absence of detectable succinate dehydrogenase activity in mitochondria of E264/U2 and the lack of complementation of the mutant by an sdh11null strain indicated a mutation in SDH1. The second plasmid (pG52/T8) had an insert with reading frame (YJL045w) of yeast chromosome X coding for a homologue of SDH1. Subclones containing the SDH1 homologue (SDH1b), restored respiration in E264/U2 indicating that the protein encoded by this gene is functional. The expression of the two genes was compared by assaying the beta-galactosidase activities of yeast transformed with plasmids containing fusions of lacZ to the upstream regions of SDH1 and SDH1b. The 100-500 times lower activity measured in transformants harbouring the SDH1b-lacZ fusion indicates that the isoenzyme encoded by SDH1b is unlikely to play an important role in mitochondrial respiration. This is also supported by the absence of any obvious phenotype in cells with a disrupted copy of SDH1b.


Assuntos
Saccharomyces cerevisiae/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Supressão Genética , Clonagem Molecular , Grupo dos Citocromos c/metabolismo , Genes Fúngicos , Óperon Lac , Mitocôndrias/metabolismo , Consumo de Oxigênio , Plasmídeos/genética , Proteínas Recombinantes de Fusão/biossíntese , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Succinato Citocromo c Oxirredutase/metabolismo , Transformação Genética , beta-Galactosidase/metabolismo
10.
Anal Biochem ; 260(1): 38-43, 1998 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9648650

RESUMO

Null mutants in COX4, COX5a, or COX6, which encode subunits 4, 5, and 6 of yeast cytochrome oxidase are blocked in assembly of the enzyme. The mutants are complemented by gene constructs expressing cytochrome oxidase subunits with a carboxyl terminal extension containing a biotinylation signal sequence. Spectra and enzyme activities of mitochondria from transformants expressing a biotinylated subunit indicate restoration of a functional cytochrome oxidase. Biotinylated cytochrome oxidase can be affinity-purified from mitochondrial extracts by fractionation on a monomeric avidin column. This method can be used to purify the enzyme from small amounts of starting material.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Proteínas Fúngicas/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Alelos , Avidina , Biotinilação , Cromatografia de Afinidade , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/enzimologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/ultraestrutura
11.
FEBS Lett ; 412(3): 410-4, 1997 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-9276437

RESUMO

The concentration and submitochondrial distribution of the subunit polypeptides of cytochrome oxidase have been studied in wild type yeast and in different mutants impaired in assembly of this respiratory complex. All the subunit polypeptides of the enzyme are associated with mitochondrial membranes of wild type cells, except for a small fraction of subunits 4 and 6 that is recovered in the soluble protein fraction of mitochondria. Cytochrome oxidase mutants consistently display a severe reduction in the steady-state concentration of subunit 1 due to its increased turnover. As a consequence, most of subunit 4, which normally is associated with subunit 1, is found in the soluble fraction. A similar shift from membrane-bound to soluble subunit 6 is seen in mutants blocked in expression of subunit 5a. In contrast, null mutations in COX6 coding for subunit 6 promote loss of subunit 5a. The absence of subunit 5a in the cox6 mutant is the result of proteolytic degradation rather than regulation of its expression by subunit 6. The possible role of the ATP-dependent proteases Rca1p and Afg3p in proteolysis of subunits 1 and 5a has been assessed in strains with combined mutations in COX6, RCA1, and/or AFG3. Immunochemical assays indicate that another protease(s) must be responsible for most of the proteolytic loss of these proteins.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metaloendopeptidases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Partículas Submitocôndricas/enzimologia , Partículas Submitocôndricas/genética , Adenosina Trifosfatases/genética , Deficiência de Citocromo-c Oxidase , Estabilidade Enzimática/genética , Proteínas Fúngicas/genética , Proteínas Mitocondriais , Mutagênese Insercional , Partículas Submitocôndricas/metabolismo
12.
J Biol Chem ; 272(30): 19088-94, 1997 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-9228094

RESUMO

The respiratory defect of Saccharomyces cerevisiae mutants assigned to complementation group G4 of a pet strain collection stems from their failure to synthesize cytochrome oxidase. The mutations do not affect expression of either the mitochondrially or nuclearly encoded subunits of the enzyme. The cytochrome oxidase deficiency also does not appear to be related to mitochondrial copper metabolism or heme a biosynthesis. These data suggest that the mutants are likely to be impaired in assembly of the enzyme. A gene designated COX15 has been cloned by transformation of mutants from complementation group G4. This gene is identical to reading frame YER141w on chromosome 5. To facilitate further studies, Cox15p has been expressed as a biotinylated protein. Biotinylated Cox15p fully restores cytochrome oxidase in cox15 mutants, indicating that the carboxyl-terminal sequence with biotin does not affect its function. Cox15p is a constituent of the mitochondrial inner membrane and, because of its resistance to proteolysis, probably is largely embedded in the phospholipid bilayer of the membrane. The present studies further emphasize the complexity of cytochrome oxidase assembly and report a new constituent of mitochondria involved in this process. The existence of COX15 homologs in Schizosaccharomyces pombe and Caenorhabditis elegans suggests that it may be widely distributed in eucaryotic organisms.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Centrifugação com Gradiente de Concentração , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Peso Molecular , Consumo de Oxigênio , Fenótipo , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Schizosaccharomyces , Alinhamento de Sequência , Espectrofotometria Atômica
13.
J Biol Chem ; 272(22): 14356-64, 1997 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-9162072

RESUMO

C173 and W125 are pet mutants of Saccharomyces cerevisiae, partially deficient in cytochrome oxidase but with elevated concentrations of cytochrome c. Assays of electron transport chain enzymes indicate that the mutations exert different effects on the terminal respiratory pathway, including an inefficient transfer of electrons between the bc1 and the cytochrome oxidase complexes. A cloned gene capable of restoring respiration in C173/U1 and W125 is identical to reading frame YGR112w of yeast chromosome VII (GenBank Z72897Z72897). The encoded protein is homologous to the product of the mammalian SURF-1 gene. In view of the homology, the yeast gene has been designated SHY1 (Surf Homolog of Yeast). An antibody against the carboxyl-terminal half of Shy1p has been used to localize the protein in the inner mitochondrial membrane. Deletion of part of SHY1 produces a phenotype similar to that of G91 mutants. Disruption of SHY1 at a BamHI site, located approximately 2/3 of the way into the gene, has no obvious phenotypic consequence. This evidence, together with the ability of a carboxyl-terminal coding sequence starting from the BamHI site to complement a shy1 mutant, suggests that the Shy1p contains two domains that can be separately expressed to form a functional protein.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Clonagem Molecular , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Mutação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
14.
J Biol Chem ; 272(14): 9182-8, 1997 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-9083049

RESUMO

Ubiquinone (coenzyme Q or Q) is a lipophilic metabolite that functions in the electron transport chain in the plasma membrane of prokaryotes and in the inner mitochondrial membrane of eukaryotes. Q-deficient mutants of Saccharomyces cerevisiae fall into eight complementation groups (coq1-coq8). Yeast mutants from the coq5 complementation group lack Q and as a result are respiration-defective and fail to grow on nonfermentable carbon sources. A nuclear gene, designated COQ5 was isolated from a yeast genomic library based on its ability to restore growth of a representative coq5 mutant on media containing glycerol as the sole carbon source. The DNA segment responsible for the complementation contained an open reading frame (GenBankTM accession number Z49210Z49210) with 44% sequence identity over 262 amino acids to UbiE, which is required for a C-methyltransferase step in the Q and menaquinone biosynthetic pathways in Escherichia coli. Both the ubiE and COQ5 coding sequences contain sequence motifs common to a wide variety of S-adenosyl-L-methionine-dependent methyltransferases. A gene fusion expressing a biotinylated form of Coq5p retains function, as assayed by the complementation of the coq5 mutant. This Coq5-biotinylated fusion protein is located in mitochondria. The synthesis of two farnesylated analogs of intermediates in the ubiquinone biosynthetic pathway is reported. These reagents have been used to develop in vitro C-methylation assays with isolated yeast mitochondria. These studies show that Coq5p is required for the C-methyltransferase step that converts 2-methoxy-6-polyprenyl-1, 4-benzoquinone to 2-methoxy-5-methyl-6-polyprenyl-1,4-benzoquinone.


Assuntos
Genes Fúngicos , Metiltransferases/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ubiquinona/biossíntese , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Teste de Complementação Genética , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Mapeamento por Restrição , Saccharomyces cerevisiae/enzimologia
15.
Curr Genet ; 31(3): 228-34, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9065385

RESUMO

The nuclear gene MRP10 of Saccharomyces cerevisiae was cloned by complementation of a respiratory deficient mutant N518/L1. This mutant is defective in mitochondrial translation and shows a tendency to accumulate deletions in mitochondrial DNA (rho-). Analysis revealed Mrp10p to be a component of the 37 S subunit of the mitochondrial ribosomes. Disruption of MRP10 in a haploid strain of yeast elicits a phenotype identical to that of the original mutant. The respiratory defect of the null mutant is rescued by re-introducing the MRP10 gene in a wild-type mitochondrial DNA background. These results indicate that Mrp10p belongs to the class of yeast mitochondrial ribosomal proteins that are essential for translation. Searches of current databases failed to reveal any homologs among known bacterial or eucaryotic cytoplasmic ribosomal proteins. Some sequence similarity, however, was detected between Mrp10p and Yml37p, previously identified as a component of the yeast mitochondrial 50 S ribosomal subunit.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Marcação de Genes , Teste de Complementação Genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Biossíntese de Proteínas , Proteínas Ribossômicas/química
16.
Hum Genet ; 99(3): 329-33, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9050918

RESUMO

The COX17 gene of Saccharomyces cerevisiae codes for a cytoplasmic protein essential for the expression of functional cytochrome oxidase. This protein has been implicated in targeting copper to mitochondria. To determine if Cox17p is present in mammalian cells, a yeast strain carrying a null mutation in COX17 was transformed with a human cDNA expression library. All the respiratory competent clones obtained from the transformations carried a common cDNA sequence with a reading frame predicting a product homologous to yeast Cox17p. The cloning of a mammalian COX17 homolog suggests that the encoded product is likely to function in copper recruitment in eucaryotic cells in general. Its presence in humans provides a possible target for genetically inherited deficiencies in cytochrome oxidase.


Assuntos
Proteínas de Transporte de Cátions , Cobre/metabolismo , Mitocôndrias/metabolismo , Proteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte , Proteínas de Transporte de Cobre , DNA Complementar/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli , Teste de Complementação Genética , Células HeLa , Humanos , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos , Mapeamento por Restrição , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transformação Genética
17.
J Biol Chem ; 272(52): 33191-6, 1997 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-9407107

RESUMO

Cox17p was previously shown to be essential for the expression of cytochrome oxidase in Saccharomyces cerevisiae. In the present study COX17 has been placed under the control of the GAL10 promoter in an autonomously replicating plasmid. A yeast transformant harboring the high copy construct was used to purify Cox17p to homogeneity. Purified Cox17p contains 0.2-0.3 mol of copper per mol of protein. The molar copper content is increased to 1.8 after incubation of Cox17p in the presence of a 6-fold molar excess of cuprous chloride under reduced conditions. An antibody against Cox17p was obtained by immunization of rabbits with a carboxyl-terminal peptide coupled to bovine serum albumin. The antiserum detects Cox17p in both the mitochondrial and soluble protein fractions of wild type yeast and of the transformant overexpressing Cox17p. Exposure of intact mitochondria to hypotonic conditions causes most of Cox17p to be released as a soluble protein indicating that the mitochondrial fraction of Cox17p is localized in the intermembrane space. These results are consistent with the previously proposed function of Cox17p, namely in providing cytoplasmic copper for mitochondrial utilization.


Assuntos
Proteínas de Transporte de Cátions , Cobre/metabolismo , Proteínas de Membrana , Proteínas/isolamento & purificação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Bovinos , Proteínas de Transporte de Cobre , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais , Chaperonas Moleculares , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas/genética , Proteínas/metabolismo , Coelhos , Saccharomyces cerevisiae/metabolismo
18.
Yeast ; 12(14): 1421-5, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8948097

RESUMO

A respiratory-defective mutant (C54) of Saccharomyces cerevisiae was found to have a phenotype consistent with a mutation in either mitochondrial protoporphyrinogen oxidase or ferrochelatase. The mutant is grossly deficient in hemes, accumulates protoporphyrin and is rescued by exogenous heme. The increased levels of protoporphyrin at the expense of heme is indicative of a block in one of the two last steps of the heme biosynthetic pathway. Complementation of C54 by a known ferrochelatase mutant suggested that the defect was most likely in HEM14 encoding protoporphyrinogen oxidase. A plasmid capable of complementing C54 was obtained by transformation with a yeast genomic plasmid library. A partial sequence of the insert identified the gene as reading frame YER014 of yeast chromosome V (GenBank Accession Number U18778). This reading frame codes for a protein homologous to human protoporphyrinogen oxidase. Disruption of this gene elicits a respiratory defect and accumulation of protoporphyrin. The phenotype of the null mutant together with the homology of YER014p to human protoporphyrinogen oxidase provide compelling evidence that YER014 is HEM14.


Assuntos
Genes Fúngicos , Mitocôndrias/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Clonagem Molecular , Teste de Complementação Genética , Heme/análise , Proteínas Mitocondriais , Consumo de Oxigênio/genética , Fenótipo , Porfirinas/análise , Protoporfirinogênio Oxidase , Mapeamento por Restrição , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência , Especificidade da Espécie
19.
J Biol Chem ; 271(34): 20531-5, 1996 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-8702795

RESUMO

C129/U1 is a respiratory defective mutant of Saccharomyces cerevisiae arrested in cytochrome oxidase assembly due to a mutation in COX17, a nuclear gene encoding a low molecular weight cytoplasmic protein proposed to function in mitochondrial copper recruitment. In the present study we show that the respiratory defect of C129/U1 is rescuable by two multicopy suppressors, SCO1 and SCO2. SCO1 was earlier reported to code for a mitochondrial inner membrane protein with an essential function in cytochrome oxidase assembly (Buchwald, P., Krummeck, G., and Rodel, G. (1991) Mol. Gen. Genet. 229, 413-420). SCO2 is a homologue of SCO1, whose product is also localized in the mitochondrial membrane but is not required for respiration. SCO1 also suppresses a cox17 null mutant, indicating that overexpression of Sco1p can compensate for the absence of Cox17p. In contrast, neither copper, COX17 on a multicopy plasmid, or a combination of the two is able to restore respiration in sco1 mutants. Rescue of cox17 mutants by Sco1p suggests that this mitochondrial protein plays a role either in mitochondrial copper transport or insertion of copper into the active site of cytochrome oxidase. Although SCO2 can also partially restore respiratory growth in the cox17 null mutant, rescue in this case requires addition of copper to the growth medium. SCO2 does not suppress a sco1 null mutant, although it is able to partially rescue a sco1 point mutant. We interpret the ability of SCO2 to restore respiration in cox17, but not in sco1 mutants, to indicate that Sco1p and Sco2p have overlapping but not identical functions.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Membrana , Mitocôndrias/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas Fúngicas/metabolismo , Genes Supressores , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Mapeamento por Restrição , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
J Biol Chem ; 271(24): 14504-9, 1996 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-8662933

RESUMO

Mutations in the COX17 gene of Saccharomyces cerevisiae cause a respiratory deficiency due to a block in the production of a functional cytochrome oxidase complex. Because cox17 mutants are able to express both the mitochondrially and nuclearly encoded subunits of cytochrome oxidase, the Cox17p most likely affects some late posttranslational step of the assembly pathway. A fragment of yeast nuclear DNA capable of complementing the mutation has been cloned by transformation of the cox17 mutant with a library of genomic DNA. Subcloning and sequencing of the COX17 gene revealed that it codes for a cysteine-rich protein with a molecular weight of 8,057. Unlike other previously described accessory factors involved in cytochrome oxidase assembly, all of which are components of mitochondria, Cox17p is a cytoplasmic protein. The cytoplasmic location of Cox17p suggested that it might have a function in delivery of a prosthetic group to the holoenzyme. A requirement of Cox17p in providing the copper prosthetic group of cytochrome oxidase is supported by the finding that a cox17 null mutant is rescued by the addition of copper to the growth medium. Evidence is presented indicating that Cox17p is not involved in general copper metabolism in yeast but rather has a more specific function in the delivery of copper to mitochondria.


Assuntos
Proteínas de Transporte de Cátions , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cobre/farmacologia , Proteínas de Transporte de Cobre , Proteínas Fúngicas/biossíntese , Genótipo , Mitocôndrias/metabolismo , Chaperonas Moleculares , Dados de Sequência Molecular , Fenótipo , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Mapeamento por Restrição , Saccharomyces cerevisiae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA