Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS One ; 18(6): e0284022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37294811

RESUMO

Pollution in human-made fishing ports caused by petroleum from boats, dead fish, toxic chemicals, and effluent poses a challenge to the organisms in seawater. To decipher the impact of pollution on the microbiome, we collected surface water from a fishing port and a nearby offshore island in northern Taiwan facing the Northwestern Pacific Ocean. By employing 16S rRNA gene amplicon sequencing and whole-genome shotgun sequencing, we discovered that Rhodobacteraceae, Vibrionaceae, and Oceanospirillaceae emerged as the dominant species in the fishing port, where we found many genes harboring the functions of antibiotic resistance (ansamycin, nitroimidazole, and aminocoumarin), metal tolerance (copper, chromium, iron and multimetal), virulence factors (chemotaxis, flagella, T3SS1), carbohydrate metabolism (biofilm formation and remodeling of bacterial cell walls), nitrogen metabolism (denitrification, N2 fixation, and ammonium assimilation), and ABC transporters (phosphate, lipopolysaccharide, and branched-chain amino acids). The dominant bacteria at the nearby offshore island (Alteromonadaceae, Cryomorphaceae, Flavobacteriaceae, Litoricolaceae, and Rhodobacteraceae) were partly similar to those in the South China Sea and the East China Sea. Furthermore, we inferred that the microbial community network of the cooccurrence of dominant bacteria on the offshore island was connected to dominant bacteria in the fishing port by mutual exclusion. By examining the assembled microbial genomes collected from the coastal seawater of the fishing port, we revealed four genomic islands containing large gene-containing sequences, including phage integrase, DNA invertase, restriction enzyme, DNA gyrase inhibitor, and antitoxin HigA-1. In this study, we provided clues for the possibility of genomic islands as the units of horizontal transfer and as the tools of microbes for facilitating adaptation in a human-made port environment.


Assuntos
Microbiota , Rhodobacteraceae , Animais , Humanos , Oceano Pacífico , RNA Ribossômico 16S/genética , Taiwan , Água do Mar/microbiologia , Rhodobacteraceae/genética
2.
Genes (Basel) ; 13(6)2022 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-35741857

RESUMO

The common carp is a hypoxia-tolerant fish, and the understanding of its ability to live in low-oxygen environments has been applied to human health issues such as cancer and neuron degeneration. Here, we investigated differential gene expression changes during hypoxia in five common carp organs including the brain, the gill, the head kidney, the liver, and the intestine. Based on RNA sequencing, gene expression changes under hypoxic conditions were detected in over 1800 genes in common carp. The analysis of these genes further revealed that all five organs had high expression-specific properties. According to the results of the GO and KEGG, the pathways involved in the adaptation to hypoxia provided information on responses specific to each organ in low oxygen, such as glucose metabolism and energy usage, cholesterol synthesis, cell cycle, circadian rhythm, and dopamine activation. DisGeNET analysis showed that some human diseases such as cancer, diabetes, epilepsy, metabolism diseases, and social ability disorders were related to hypoxia-regulated genes. Our results suggested that common carp undergo various gene regulations in different organs under hypoxic conditions, and integrative bioinformatics may provide some potential targets for advancing disease research.


Assuntos
Carpas , Hipóxia , Animais , Perfilação da Expressão Gênica , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio , Transcriptoma/genética
3.
J Biol Chem ; 298(6): 101957, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452675

RESUMO

Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Pontos Quânticos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbono , Vírus da Encefalite Japonesa (Espécie)/química , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral/metabolismo
4.
FASEB J ; 35(10): e21915, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496088

RESUMO

During development, erythroid cells are generated by two waves of hematopoiesis. In zebrafish, primitive erythropoiesis takes place in the intermediate cell mass region, and definitive erythropoiesis arises from the aorta-gonad mesonephros. TALE-homeoproteins Meis1 and Pbx1 function upstream of GATA1 to specify the erythroid lineage. Embryos lacking Meis1 or Pbx1 have weak gata1 expression and fail to produce primitive erythrocytes. Nevertheless, the underlying mechanism of how Meis1 and Pbx1 mediate gata1 transcription in erythrocytes remains unclear. Here we show that Hif1α acts downstream of Meis1 to mediate gata1 expression in zebrafish embryos. Inhibition of Meis1 expression resulted in suppression of hif1a expression and abrogated primitive erythropoiesis, while injection with in vitro-synthesized hif1α mRNA rescued gata1 transcription in Meis1 morphants and recovered their erythropoiesis. Ablation of Hif1α expression either by morpholino knockdown or Crispr-Cas9 knockout suppressed gata1 transcription and abrogated primitive erythropoiesis. Results of chromatin immunoprecipitation assays showed that Hif1α associates with hypoxia-response elements located in the 3'-flanking region of gata1 during development, suggesting that Hif1α regulates gata1 expression in vivo. Together, our results indicate that Meis1, Hif1α, and GATA1 indeed comprise a hierarchical regulatory network in which Hif1α acts downstream of Meis1 to activate gata1 transcription through direct interactions with its cis-acting elements in primitive erythrocytes.


Assuntos
Células Eritroides/metabolismo , Eritropoese , Fator de Transcrição GATA1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Meis1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Imunoprecipitação da Cromatina , Eritrócitos/citologia , Eritrócitos/metabolismo , Células Eritroides/citologia , Eritropoese/genética , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Meis1/deficiência , Proteína Meis1/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/deficiência , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Transcrição Gênica , Peixe-Zebra/sangue , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
5.
J Comput Biol ; 28(7): 674-686, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33512268

RESUMO

Hypoxia-inducible factors (HIFs) and survivin (Birc5) genes are often considered important cancer drug targets for molecularly targeted therapy, as both genes play important roles in the cellular differentiation and development of neuronal cells. Pathway enrichment analysis is predominantly applied when interpreting the correlated behaviors of activated gene clusters. Traditional enrichment analysis is evaluated via p-values only, regardless of gene expression fold-change levels, gene locations, and possible hidden interactions within a pathway. Here, we combined these factors to retrieve significant pathways, as compared with traditional approaches. We performed RNA-seq analyses on Birc5a and HIF2α knocked down in zebrafish during the embryogenesis stage. Regarding Birc5a, two additional biological pathways, sphingolipid metabolism and herpes simplex infection, were identified; whereas for HIF2α, four biological pathways were re-identified, including ribosome biogenesis in eukaryotes, proteasome, purine metabolism, and complement and coagulation cascades. Our proposed approaches identified additional significant pathways directly related to cell differentiation or cancer, also providing comprehensive mechanisms for designing further biological experiments.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Survivina/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Algoritmos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Peixe-Zebra/genética
6.
FEBS J ; 285(15): 2900-2921, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29917313

RESUMO

Vibrio cholerae, the causative pathogen of the life-threatening infection cholera, encodes two copies of ß-ketoacyl-acyl carrier protein synthase III (vcFabH1 and vcFabH2). vcFabH1 and vcFabH2 are pathogenic proteins associated with fatty acid synthesis, lipid metabolism, and potential applications in biofuel production. Our biochemical assays characterize vcFabH1 as exhibiting specificity for acetyl-CoA and CoA thioesters with short acyl chains, similar to that observed for FabH homologs found in most gram-negative bacteria. vcFabH2 prefers medium chain-length acyl-CoA thioesters, particularly octanoyl-CoA, which is a pattern of specificity rarely seen in bacteria. Structural characterization of one vcFabH1 and six vcFabH2 structures determined in either apo form or in complex with acetyl-CoA/octanoyl-CoA indicate that the substrate-binding pockets of vcFabH1 and vcFabH2 are of different sizes, accounting for variations in substrate chain-length specificity. An unusual and unique feature of vcFabH2 is its C-terminal fragment that interacts with both the substrate-entrance loop and the dimer interface of the enzyme. Our discovery of the pattern of substrate specificity of both vcFabH1 and vcFabH2 can potentially aid the development of novel antibacterial agents against V. cholerae. Additionally, the distinctive substrate preference of FabH2 in V. cholerae and related facultative anaerobes conceivably make it an attractive component of genetically engineered bacteria used for commercial biofuel production.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Vibrio cholerae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Acetilcoenzima A/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocombustíveis , Cristalografia por Raios X , Cisteína/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
7.
BMC Syst Biol ; 12(Suppl 4): 45, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29745842

RESUMO

BACKGROUND: Differential gene expression analysis using RNA-seq data is a popular approach for discovering specific regulation mechanisms under certain environmental settings. Both gene ontology (GO) and KEGG pathway enrichment analysis are major processes for investigating gene groups that participate in common biological responses or possess related functions. However, traditional approaches based on differentially expressed genes only detect a few significant GO terms and pathways, which are frequently insufficient to explain all-inclusive gene regulation mechanisms. METHODS: Transcriptomes of survivin (birc5) gene knock-down experimental and wild-type control zebrafish embryos were sequenced and assembled, and a differential expression (DE) gene list was obtained for traditional functional enrichment analysis. In addition to including DE genes with significant fold-change levels, we considered additional associated genes near or overlapped with differentially expressed long noncoding RNAs (DE lncRNAs), which may directly or indirectly activate or inhibit target genes and play important roles in regulation networks. Both the original DE gene list and the additional DE lncRNA-associated genes were combined to perform a comprehensive overrepresentation analysis. RESULTS: In this study, a total of 638 DE genes and 616 DE lncRNA-associated genes (lncGenes) were leveraged simultaneously in searching for significant GO terms and KEGG pathways. Compared to the traditional approach of only using a differential expression gene list, the proposed method of employing DE lncRNA-associated genes identified several additional important GO terms and KEGG pathways. In GO enrichment analysis, 60% more GO terms were obtained, and several neuron development functional terms were retrieved as complete annotations. We also observed that additional important pathways such as the FoxO and MAPK signaling pathways were retrieved, which were shown in previous reports to play important roles in apoptosis and neuron development functions regulated by the survivin gene. CONCLUSIONS: We demonstrated that incorporating genes near or overlapped with DE lncRNAs into the DE gene list outperformed the traditional enrichment analysis method for effective biological functional interpretations. These hidden interactions between lncRNAs and target genes could facilitate more comprehensive analyses.


Assuntos
Biologia Computacional , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ontologia Genética , Transdução de Sinais/genética , Survivina/deficiência , Survivina/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
8.
Biomaterials ; 109: 12-22, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27639528

RESUMO

Angiogenesis is the process of formation of new blood vessels, which is essential to human biology, and also plays a crucial role in several pathologies such as tumor growth and metastasis, exudative age-related macular degeneration, and ischemia. Vascular endothelial growth factor (VEGF), in particular, VEGF-A165 is the most important pro-angiogenic factor for angiogenesis. Thus, blocking the interaction between VEGFs and their receptors is considered an effective anti-angiogenic strategy. We demonstrate for that first time that bovine serum albumin-capped graphene oxide (BSA-GO) exhibits high stability in physiological saline solution and possesses ultrastrong binding affinity towards VEGF-A165 [dissociation constant (Kd) ∼3 × 10-12 M], which is at least five orders of magnitude stronger than that of high-abundant plasma proteins such as human serum albumin, fibrinogen, transferrin, and immunoglobulin G. Due to the surprising binding specificity of BSA-GO for VEGF-A165 in complex plasma fluid, we have also studied the anti-angiogenic effects in vitro and in vivo. Results show that BSA-GO not only effectively inhibits the proliferation, migration and tube formation of human umbilical vein endothelial cells, but also strongly disturbs the physiological process of angiogenesis in chick chorioallantoic membrane and blocks VEGF-A165-induced blood vessel formation in rabbit corneal neovascularization. Our findings indicate that GO nanomaterials can potentially act as therapeutic anti-angiogenic agents via ultrastrong VEGF adsorption and its activity suppression.


Assuntos
Inibidores da Angiogênese/farmacologia , Grafite/química , Óxidos/química , Soroalbumina Bovina/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bovinos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Neovascularização da Córnea/patologia , Olho/efeitos dos fármacos , Grafite/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Nanoestruturas , Neovascularização Fisiológica/efeitos dos fármacos , Ligação Proteica , Coelhos , Propriedades de Superfície , Termodinâmica
9.
PLoS One ; 9(7): e101980, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000307

RESUMO

The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fígado/embriologia , Transcrição Gênica , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células/efeitos dos fármacos , Cobalto/farmacologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Fator de Crescimento de Hepatócito/metabolismo , Intestinos/embriologia , Fígado/citologia , Tamanho do Órgão/efeitos dos fármacos , Pâncreas Exócrino/embriologia , Fenótipo , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Via de Sinalização Wnt/efeitos dos fármacos
10.
J Comput Biol ; 21(7): 548-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24798230

RESUMO

Notch signaling controls cell fate decisions and regulates multiple biological processes, such as cell proliferation, differentiation, and apoptosis. Computational modeling of the deterministic simulation of Notch signaling has provided important insight into the possible molecular mechanisms that underlie the switch from the undifferentiated stem cell to the differentiated cell. Here, we constructed a stochastic model of a Notch signaling model containing Hes1, Notch1, RBP-Jk, Mash1, Hes6, and Delta. mRNA and protein were represented as a discrete state, and 334 reactions were employed for each biochemical reaction using a graphics processing unit-accelerated Gillespie scheme. We employed the tuning of 40 molecular mechanisms and revealed several potential mediators capable of enabling the switch from cell stemness to differentiation. These effective mediators encompass different aspects of cellular regulations, including the nuclear transport of Hes1, the degradation of mRNA (Hes1 and Notch1) and protein (Notch1), the association between RBP-Jk and Notch intracellular domain (NICD), and the cleavage efficiency of the NICD. These mechanisms overlap with many modifiers that have only recently been discovered to modulate the Notch signaling output, including microRNA action, ubiquitin-mediated proteolysis, and the competitive binding of the RBP-Jk-DNA complex. Moreover, we identified the degradation of Hes1 mRNA and nuclear transport of Hes1 as the dominant mechanisms that were capable of abolishing the cell state transition induced by other molecular mechanisms.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Neurais/citologia , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biologia Computacional/métodos , Simulação por Computador , Proteínas de Homeodomínio/genética , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Células-Tronco Neurais/metabolismo , Receptores Notch/genética , Proteínas Repressoras/genética , Transdução de Sinais , Processos Estocásticos , Fatores de Transcrição HES-1
11.
Int J Data Min Bioinform ; 9(1): 37-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24783407

RESUMO

Simple Sequence Repeats (SSRs), also known as microsatellites, regulate gene functions. SSR mutations in a disease gene may cause various genetic disorders. To identify putative functional SSRs, a web-based system, Gene Ontology SSR Hierarchy (GOSH), was developed to facilitate discovery of significant associations between SSRs and Gene Ontology (GO) terms. Using the GO hierarchy term structure, GOSH assists users with selecting functional or biological gene subsets. Significant SSR patterns are retrieved and identified via comprehensive overrepresentation analysis within a target gene subset and by comparing results with orthologous genes. Pattern relationships between different biological subsets or supersets can be observed by using the GO hierarchy structure directly. GOSH also supports GO searching through identified significant SSR patterns and all GO terms possessing such patterns are listed for consultation. GOSH is the first comprehensive and efficient online mining tool for discovering significant orthologous SSR patterns in GO terms and is available at http://gosh.cs.ntou.edu.tw/.


Assuntos
Mineração de Dados/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Ontologia Genética , Repetições de Microssatélites/genética , Processamento de Linguagem Natural , Análise de Sequência de DNA/métodos , Homologia de Sequência
12.
Methods ; 67(3): 354-63, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561167

RESUMO

RNA-seq analysis provides a powerful tool for revealing relationships between gene expression level and biological function of proteins. In order to identify differentially expressed genes among various RNA-seq datasets obtained from different experimental designs, an appropriate normalization method for calibrating multiple experimental datasets is the first challenging problem. We propose a novel method to facilitate biologists in selecting a set of suitable housekeeping genes for inter-sample normalization. The approach is achieved by adopting user defined experimentally related keywords, GO annotations, GO term distance matrices, orthologous housekeeping gene candidates, and stability ranking of housekeeping genes. By identifying the most distanced GO terms from query keywords and selecting housekeeping gene candidates with low coefficients of variation among different spatio-temporal datasets, the proposed method can automatically enumerate a set of functionally irrelevant housekeeping genes for pratical normalization. Novel and benchmark testing RNA-seq datasets were applied to demostrate that different selections of housekeeping gene lead to strong impact on differential gene expression analysis, and compared results have shown that our proposed method outperformed other traditional approaches in terms of both sensitivity and specificity. The proposed mechanism of selecting appropriate houskeeping genes for inter-dataset normalization is robust and accurate for differential expression analyses.


Assuntos
Peixes/genética , Ontologia Genética , Genes Essenciais , Análise de Sequência de RNA/métodos , Animais , Feminino , Peixes/fisiologia , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Masculino
13.
PLoS One ; 9(1): e86718, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489775

RESUMO

Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5' untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.


Assuntos
Vias Biossintéticas/genética , Evolução Molecular , Heme/biossíntese , Regiões 5' não Traduzidas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Sequência de Bases , Sequência Conservada/genética , Desoxirribonucleases/metabolismo , Éxons/genética , Genes , Íntrons/genética , Dados de Sequência Molecular , Elementos de Resposta/genética , Seleção Genética , Alinhamento de Sequência
14.
Neurotoxicol Teratol ; 38: 92-103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23714372

RESUMO

Alcohol exposure during embryogenesis results in a variety of developmental disorders. Here, we demonstrate that continuous exposure to 1.5% ethanol causes substantial apoptosis and abrogated retinal and CNS development in zebrafish embryos. Chronic exposure to ethanol for 24h before hatching also induces apoptosis and retinal disorder. After the 2-day post-fertilization (dpf) stage, chronic exposure to ethanol continued to induce apoptosis, but did not block retinal differentiation. Although continuous ethanol exposure induces substantial accumulation of reactive oxygen species (ROS) and increases p53 expression, depletion of p53 did not eliminate ethanol-induced apoptosis. On the other hand, sequestering ROS with the antioxidant reagent N-acetylcysteine (NAC) successfully inhibited ethanol-associated apoptosis, suggesting that the ethanol-induced cell death primarily results from ROS accumulation. Continuous ethanol treatment of embryos reduced expression of the mature neural and photoreceptor markers elavl3/huC, rho, and crx; in addition, expression of the neural and retinal progenitor markers ascl1b and pax6b was maintained at the undifferentiated stage, indicating that retinal and CNS neural progenitor cells failed to undergo further differentiation. Moreover, ethanol treatment enhanced BrdU incorporation, histone H3 phosphorylation, and pcna expression in neural progenitor cells, thereby maintaining a high rate of proliferation. Ethanol treatment also resulted in sustained transcription of ccnd1/cyclin D1 and ccne/cyclin E throughout development in neural progenitor cells, without an appropriate increase of cdkn1b/p27 and cdkn1c/p57 expression, suggesting that these cells failed to exit from the cell cycle. Although NAC was able to mitigate ethanol-mediated apoptosis, it was unable to ameliorate the defects in visual and CNS neural differentiation, suggesting that abrogated neural development in ethanol-exposed embryos is unlikely to arise from excessive apoptosis. In conclusion, we demonstrate that the pathological effect of ethanol on zebrafish embryos is partially attributable to cell death and inhibition of visual and CNS neuron differentiation. Excessive apoptosis largely results from the accumulation of ROS, whereas abrogated neural development is caused by failure of cell cycle arrest, which in turn prevents a successful transition from proliferation to differentiation.


Assuntos
Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Etanol/toxicidade , Neurogênese/efeitos dos fármacos , Retina/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Etanol/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retina/crescimento & desenvolvimento , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Peixe-Zebra
15.
Toxicol Appl Pharmacol ; 270(2): 174-84, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23624173

RESUMO

CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5' flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter.


Assuntos
Hidrocarboneto de Aril Hidroxilases/biossíntese , Regulação Enzimológica da Expressão Gênica , Oxirredutases N-Desmetilantes/biossíntese , Receptores de Hidrocarboneto Arílico/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização in Situ Fluorescente , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Fígado/fisiologia , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Dibenzodioxinas Policloradas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Peixe-Zebra/metabolismo
16.
Anal Chem ; 85(2): 890-7, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23237057

RESUMO

Recent developments in high resolution mass spectrometry (HR-MS) technology have ushered proteomics into a new era. However, the importance of using a common, open data platform for signal processing of HR-MS spectra has not been sufficiently addressed. In this study, a MS signal processor was developed to facilitate data integration from different instruments and different proteomics approaches into a unified platform without compromising protein identification and quantitation performance. This processor supports parallel processing capability which allows full utilization of computing resources to speed up signal processing performance to >1 gigabytes/min. The storage space occupied by the processed MS data can be reduced to ~10%, which helps the analysis and management of large quantities of data from comprehensive proteomics studies. For quantitation at the MS level, processing accuracy is improved and processing time for ASAPRatio is reduced to ~50%. For quantitation at the MS/MS level, accurate reporter ion ratios from different instruments can be directly determined by the processed MS/MS spectra and reported in the Mascot search result directly without using specialized iTRAQ software.


Assuntos
Proteínas/análise , Proteômica , Software , Células Cultivadas , Humanos , Células Jurkat , Espectrometria de Massas
17.
Appl Biochem Biotechnol ; 165(3-4): 1047-56, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21750992

RESUMO

The enzymatically active region of amylopullulanase from Thermoanaerobacterium saccharolyticum NTOU1 (TsaNTOU1Apu) was identified by truncation mutagenesis. Two truncated TsaNTOU1Apu enzymes, TsaNTOU1ApuM957 and TsaNTOU1ApuK885, were selected and characterized. Both TsaNTOU1ApuM957 and TsaNTOU1ApuK885 showed similar specific activities toward various substrates. The overall catalytic efficiency (k (cat)/apparent K (m)) for the soluble starch or pullulan substrate, however, was 20-25% lower in TsaNTOU1ApuK885 than in TsaNTOU1ApuM957. Both truncated enzymes exhibited similar thermostability and substrate-binding ability against the raw starch. The fluorescence and circular dichroism spectrometry studies indicated that TsaNTOU1ApuK885 retained an active folding conformation similar to that of TsaNTOU1ApuM957. These results indicate that a large part of the TsaNTOU1Apu, such as the C-terminal carbohydrate-binding module family 20, the second fibronectin type III, and a portion of the first FnIII motifs, could be removed without causing a serious aberrant structural change or a dramatic decrease in hydrolysis of soluble starch and pullulan.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Isoenzimas/metabolismo , Proteínas Recombinantes/metabolismo , Thermoanaerobacterium/enzimologia , Proteínas de Bactérias/genética , Domínio Catalítico , Dicroísmo Circular , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Glicosídeo Hidrolases/genética , Temperatura Alta , Hidrólise , Isoenzimas/genética , Cinética , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Amido/metabolismo , Especificidade por Substrato , Thermoanaerobacterium/genética , Transformação Bacteriana
18.
BMC Syst Biol ; 5 Suppl 1: S3, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21689478

RESUMO

BACKGROUND: Hypoxia-inducible factors (HIFs) are transcription factors that play a crucial role in response to hypoxic stress in living organisms. The HIF pathway is activated by changes in cellular oxygen levels and has significant impacts on the regulation of gene expression patterns in cancer cells. Identifying functional conservation across species and discovering conserved regulatory motifs can facilitate the selection of reference species for empirical tests. This paper describes a cross-species functional pathway mapping strategy based on evidence of homologous relationships that employs matrix-based searching techniques for identifying transcription factor-binding sites on all retrieved HIF target genes. RESULTS: HIF-related orthologous and paralogous genes were mapped onto the conserved pathways to indicate functional conservation across species. Quantitatively measured HIF pathways are depicted in order to illustrate the extent of functional conservation. The results show that in spite of the evolutionary process of speciation, distantly related species may exhibit functional conservation owing to conservative pathways. The novel terms OrthRate and ParaRate are proposed to quantitatively indicate the flexibility of a homologous pathway and reveal the alternative regulation of functional genes. CONCLUSION: The developed functional pathway mapping strategy provides a bioinformatics approach for constructing biological pathways by highlighting the homologous relationships between various model species. The mapped HIF pathways were quantitatively illustrated and evaluated by statistically analyzing their conserved transcription factor-binding elements. KEYWORDS: hypoxia-inducible factor (HIF), hypoxia-response element (HRE), transcription factor (TF), transcription factor binding site (TFBS), KEGG (Kyoto Encyclopedia of Genes and Genomes), cross-species comparison, orthology, paralogy, functional pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biologia Computacional/métodos , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada/genética , Bases de Dados Genéticas , Humanos , Camundongos , Elementos de Resposta/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
19.
Biotechnol Lett ; 33(7): 1441-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21380775

RESUMO

A xylanase gene was PCR-cloned from Thermoanaerobacterium saccharolyticum and expressed in Escherichia coli. The xylanase (XynA) consisted of a signal peptide, glycoside hydrolase family 10 domains, carbohydrate-binding modules, and surface layer homology domains. It was optimally active at 70-73°C and at pH 5-7. It had enhanced activity with NaCl with optimal activity at 0.4 M but was tolerant up to 2 M NaCl. The thermostable and salt-tolerant properties of this xylanase suggest that it may be useful for industrial applications.


Assuntos
Sais/metabolismo , Thermoanaerobacterium/enzimologia , Xilosidases/genética , Xilosidases/metabolismo , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/genética , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Temperatura , Xilosidases/química
20.
J Agric Food Chem ; 58(19): 10431-6, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20822145

RESUMO

L-rhamnose isomerase (EC 5.3.1.14, L-RhI) catalyzes the reversible aldose-ketose isomerization between L-rhamnose and L-rhamnulose. In this study, the L-Rhi gene encoding L-Rhi was PCR-cloned from Thermoanaerobacterium saccharolyticum NTOU1 and then expressed in Escherichia coli. A high yield of the active L-RhI, 9780 U/g of wet cells, was obtained in the presence of 0.2 mM IPTG induction. L-RhI was purified sequentially using heat treatment, nucleic acid precipitation, and anion-exchange chromatography. The purified L-RhI showed an apparent optimal pH of 7 and an optimal temperature at 75 °C. The enzyme was stable at pH values ranging from 5 to 9, and the activity was fully retained after a 2 h incubation at 40-70 °C. L-RhI from T. saccharolyticum NTOU1 is the most thermostable L-RhI to date, and it has a high specific activity (163 U/mg) and an acceptable purity after heat treatment, suggesting that this enzyme has the potential to be used in rare sugar production.


Assuntos
Aldose-Cetose Isomerases/genética , Thermoanaerobacterium/enzimologia , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Frutose/biossíntese , Expressão Gênica , Glucose/biossíntese , Temperatura Alta , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Thermoanaerobacterium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA