Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Sci Sleep ; 16: 555-572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827394

RESUMO

Purpose: This study aims to enhance the clinical use of automated sleep-scoring algorithms by incorporating an uncertainty estimation approach to efficiently assist clinicians in the manual review of predicted hypnograms, a necessity due to the notable inter-scorer variability inherent in polysomnography (PSG) databases. Our efforts target the extent of review required to achieve predefined agreement levels, examining both in-domain (ID) and out-of-domain (OOD) data, and considering subjects' diagnoses. Patients and Methods: A total of 19,578 PSGs from 13 open-access databases were used to train U-Sleep, a state-of-the-art sleep-scoring algorithm. We leveraged a comprehensive clinical database of an additional 8832 PSGs, covering a full spectrum of ages (0-91 years) and sleep-disorders, to refine the U-Sleep, and to evaluate different uncertainty-quantification approaches, including our novel confidence network. The ID data consisted of PSGs scored by over 50 physicians, and the two OOD sets comprised recordings each scored by a unique senior physician. Results: U-Sleep demonstrated robust performance, with Cohen's kappa (K) at 76.2% on ID and 73.8-78.8% on OOD data. The confidence network excelled at identifying uncertain predictions, achieving AUROC scores of 85.7% on ID and 82.5-85.6% on OOD data. Independently of sleep-disorder status, statistical evaluations revealed significant differences in confidence scores between aligning vs discording predictions, and significant correlations of confidence scores with classification performance metrics. To achieve κ ≥ 90% with physician intervention, examining less than 29.0% of uncertain epochs was required, substantially reducing physicians' workload, and facilitating near-perfect agreement. Conclusion: Inter-scorer variability limits the accuracy of the scoring algorithms to ~80%. By integrating an uncertainty estimation with U-Sleep, we enhance the review of predicted hypnograms, to align with the scoring taste of a responsible physician. Validated across ID and OOD data and various sleep-disorders, our approach offers a strategy to boost automated scoring tools' usability in clinical settings.

2.
Neurology ; 102(12): e209428, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38843489

RESUMO

BACKGROUND AND OBJECTIVES: Current practice in clinical neurophysiology is limited to short recordings with conventional EEG (days) that fail to capture a range of brain (dys)functions at longer timescales (months). The future ability to optimally manage chronic brain disorders, such as epilepsy, hinges upon finding methods to monitor electrical brain activity in daily life. We developed a device for full-head subscalp EEG (Epios) and tested here the feasibility to safely insert the electrode leads beneath the scalp by a minimally invasive technique (primary outcome). As secondary outcome, we verified the noninferiority of subscalp EEG in measuring physiologic brain oscillations and pathologic discharges compared with scalp EEG, the established standard of care. METHODS: Eight participants with pharmacoresistant epilepsy undergoing intracranial EEG received in the same surgery subscalp electrodes tunneled between the scalp and the skull with custom-made tools. Postoperative safety was monitored on an inpatient ward for up to 9 days. Sleep-wake, ictal, and interictal EEG signals from subscalp, scalp, and intracranial electrodes were compared quantitatively using windowed multitaper transforms and spectral coherence. Noninferiority was tested for pairs of neighboring subscalp and scalp electrodes with a Bland-Altman analysis for measurement bias and calculation of the interclass correlation coefficient (ICC). RESULTS: As primary outcome, up to 28 subscalp electrodes could be safely placed over the entire head through 1-cm scalp incisions in a ∼1-hour procedure. Five of 10 observed perioperative adverse events were linked to the investigational procedure, but none were serious, and all resolved. As a secondary outcome, subscalp electrodes advantageously recorded EEG percutaneously without requiring any maintenance and were noninferior to scalp electrodes for measuring (1) variably strong, stage-specific brain oscillations (alpha in wake, delta, sigma, and beta in sleep) and (2) interictal spikes peak-potentials and ictal signals coherent with seizure propagation in different brain regions (ICC >0.8 and absence of bias). DISCUSSION: Recording full-head subscalp EEG for localization and monitoring purposes is feasible up to 9 days in humans using minimally invasive techniques and noninferior to the current standard of care. A longer prospective ambulatory study of the full system will be necessary to establish the safety and utility of this innovative approach. TRIAL REGISTRATION INFORMATION: clinicaltrials.gov/study/NCT04796597.


Assuntos
Eletrodos Implantados , Eletroencefalografia , Estudos de Viabilidade , Humanos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Couro Cabeludo , Encéfalo/cirurgia , Encéfalo/fisiopatologia
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38216528

RESUMO

Our brains extract structure from the environment and form predictions given past experience. Predictive circuits have been identified in wide-spread cortical regions. However, the contribution of medial temporal structures in predictions remains under-explored. The hippocampus underlies sequence detection and is sensitive to novel stimuli, sufficient to gain access to memory, while the amygdala to novelty. Yet, their electrophysiological profiles in detecting predictable and unpredictable deviant auditory events remain unknown. Here, we hypothesized that the hippocampus would be sensitive to predictability, while the amygdala to unexpected deviance. We presented epileptic patients undergoing presurgical monitoring with standard and deviant sounds, in predictable or unpredictable contexts. Onsets of auditory responses and unpredictable deviance effects were detected earlier in the temporal cortex compared with the amygdala and hippocampus. Deviance effects in 1-20 Hz local field potentials were detected in the lateral temporal cortex, irrespective of predictability. The amygdala showed stronger deviance in the unpredictable context. Low-frequency deviance responses in the hippocampus (1-8 Hz) were observed in the predictable but not in the unpredictable context. Our results reveal a distributed network underlying the generation of auditory predictions and suggest that the neural basis of sensory predictions and prediction error signals needs to be extended.


Assuntos
Córtex Auditivo , Humanos , Córtex Auditivo/fisiologia , Lobo Temporal , Tonsila do Cerebelo , Encéfalo , Hipocampo , Estimulação Acústica , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia
4.
Eur J Neurol ; 31(1): e16026, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531449

RESUMO

BACKGROUND AND PURPOSE: The diagnosis of sleep-wake disorders (SWDs) is challenging because of the existence of only few accurate biomarkers and the frequent coexistence of multiple SWDs and/or other comorbidities. The aim of this study was to assess in a large cohort of well-characterized SWD patients the potential of a data-driven approach for the identification of SWDs. METHODS: We included 6958 patients from the Bernese Sleep Registry and 300 variables/biomarkers including questionnaires, results of polysomnography/vigilance tests, and final clinical diagnoses. A pipeline, based on machine learning, was created to extract and cluster the clinical data. Our analysis was performed on three cohorts: patients with central disorders of hypersomnolence (CDHs), a full cohort of patients with SWDs, and a clean cohort without coexisting SWDs. RESULTS: A first analysis focused on the cohort of patients with CDHs and revealed four patient clusters: two clusters for narcolepsy type 1 (NT1) but not for narcolepsy type 2 or idiopathic hypersomnia. In the full cohort of SWDs, nine clusters were found: four contained patients with obstructive and central sleep apnea syndrome, one with NT1, and four with intermixed SWDs. In the cohort of patients without coexisting SWDs, an additional cluster of patients with chronic insomnia disorder was identified. CONCLUSIONS: This study confirms the existence of clear clusters of NT1 in CDHs, but mainly intermixed groups in the full spectrum of SWDs, with the exception of sleep apnea syndromes and NT1. New biomarkers are needed for better phenotyping and diagnosis of SWDs.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Transtornos do Sono-Vigília , Humanos , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/epidemiologia , Sono , Polissonografia , Transtornos do Sono-Vigília/diagnóstico , Biomarcadores
5.
Eur J Neurosci ; 59(5): 822-841, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100263

RESUMO

Auditory processing and the complexity of neural activity can both indicate residual consciousness levels and differentiate states of arousal. However, how measures of neural signal complexity manifest in neural activity following environmental stimulation and, more generally, how the electrophysiological characteristics of auditory responses change in states of reduced consciousness remain under-explored. Here, we tested the hypothesis that measures of neural complexity and the spectral slope would discriminate stages of sleep and wakefulness not only in baseline electroencephalography (EEG) activity but also in EEG signals following auditory stimulation. High-density EEG was recorded in 21 participants to determine the spatial relationship between these measures and between EEG recorded pre- and post-auditory stimulation. Results showed that the complexity and the spectral slope in the 2-20 Hz range discriminated between sleep stages and had a high correlation in sleep. In wakefulness, complexity was strongly correlated to the 20-40 Hz spectral slope. Auditory stimulation resulted in reduced complexity in sleep compared to the pre-stimulation EEG activity and modulated the spectral slope in wakefulness. These findings confirm our hypothesis that electrophysiological markers of arousal are sensitive to sleep/wake states in EEG activity during baseline and following auditory stimulation. Our results have direct applications to studies using auditory stimulation to probe neural functions in states of reduced consciousness.


Assuntos
Sono , Vigília , Humanos , Vigília/fisiologia , Sono/fisiologia , Eletroencefalografia/métodos , Fases do Sono/fisiologia , Percepção Auditiva
6.
Comput Biol Med ; 167: 107655, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976830

RESUMO

Large high-quality datasets are essential for building powerful artificial intelligence (AI) algorithms capable of supporting advancement in cardiac clinical research. However, researchers working with electrocardiogram (ECG) signals struggle to get access and/or to build one. The aim of the present work is to shed light on a potential solution to address the lack of large and easily accessible ECG datasets. Firstly, the main causes of such a lack are identified and examined. Afterward, the potentials and limitations of cardiac data generation via deep generative models (DGMs) are deeply analyzed. These very promising algorithms have been found capable not only of generating large quantities of ECG signals but also of supporting data anonymization processes, to simplify data sharing while respecting patients' privacy. Their application could help research progress and cooperation in the name of open science. However several aspects, such as a standardized synthetic data quality evaluation and algorithm stability, need to be further explored.


Assuntos
Inteligência Artificial , Eletrocardiografia , Humanos , Coração , Algoritmos , Confiabilidade dos Dados
7.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645733

RESUMO

Imagine a song you know by heart. With little effort you could sing it or play it vividly in your mind. However, we are only beginning to understand how the brain represents, holds, and manipulates these musical "thoughts". Here, we decoded listened and imagined melodies from MEG brain data (N = 71) to show that auditory regions represent the sensory properties of individual sounds, whereas cognitive control (prefrontal cortex, basal nuclei, thalamus) and episodic memory areas (inferior and medial temporal lobe, posterior cingulate, precuneus) hold and manipulate the melody as an abstract unit. Furthermore, the mental manipulation of a melody systematically changes its neural representation, reflecting the volitional control of auditory images. Our work sheds light on the nature and dynamics of auditory representations and paves the way for future work on neural decoding of auditory imagination.

8.
Front Neurol ; 14: 1183810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560450

RESUMO

Outcome prognostication in comatose patients after cardiac arrest (CA) remains to date a challenge. The major determinant of clinical outcome is the post-hypoxic/ischemic encephalopathy. Electroencephalography (EEG) is routinely used to assess neural functions in comatose patients. Currently, EEG-based outcome prognosis relies on visual evaluation by medical experts, which is time consuming, prone to subjectivity, and oblivious to complex patterns. The field of deep learning has given rise to powerful algorithms for detecting patterns in large amounts of data. Analyzing EEG signals of coma patients with deep neural networks with the goal of assisting in outcome prognosis is therefore a natural application of these algorithms. Here, we provide the first narrative literature review on the use of deep learning for prognostication after CA. Existing studies show overall high performance in predicting outcome, relying either on spontaneous or on auditory evoked EEG signals. Moreover, the literature is concerned with algorithmic interpretability, and has shown that largely, deep neural networks base their decisions on clinically or neurophysiologically meaningful features. We conclude this review by discussing considerations that the fields of artificial intelligence and neurology will need to jointly address in the future, in order for deep learning algorithms to break the publication barrier, and to be integrated in clinical practice.

9.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37045604

RESUMO

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Assuntos
Córtex Auditivo , Lobo Temporal , Humanos , Feminino , Lobo Temporal/fisiologia , Percepção Auditiva/fisiologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Eletrocorticografia , Córtex Auditivo/fisiologia , Estimulação Acústica
10.
NPJ Digit Med ; 6(1): 33, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878957

RESUMO

AASM guidelines are the result of decades of efforts aiming at standardizing sleep scoring procedure, with the final goal of sharing a worldwide common methodology. The guidelines cover several aspects from the technical/digital specifications, e.g., recommended EEG derivations, to detailed sleep scoring rules accordingly to age. Automated sleep scoring systems have always largely exploited the standards as fundamental guidelines. In this context, deep learning has demonstrated better performance compared to classical machine learning. Our present work shows that a deep learning-based sleep scoring algorithm may not need to fully exploit the clinical knowledge or to strictly adhere to the AASM guidelines. Specifically, we demonstrate that U-Sleep, a state-of-the-art sleep scoring algorithm, can be strong enough to solve the scoring task even using clinically non-recommended or non-conventional derivations, and with no need to exploit information about the chronological age of the subjects. We finally strengthen a well-known finding that using data from multiple data centers always results in a better performing model compared with training on a single cohort. Indeed, we show that this latter statement is still valid even by increasing the size and the heterogeneity of the single data cohort. In all our experiments we used 28528 polysomnography studies from 13 different clinical studies.

11.
Brain ; 146(2): 778-788, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637902

RESUMO

Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and leaves a considerable number of patients in a 'grey zone', with uncertain prognosis. Quantitative analysis of EEG responses to auditory stimuli can provide a window into neural functions in coma and information about patients' chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that are predictive of patients' chances of awakening and survival at 3 months. We used convolutional neural networks (CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3 months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83 ± 0.04 and 0.81 ± 0.06 and an area under the curve in predicting outcome of 0.69 ± 0.05 and 0.70 ± 0.05, for patients undergoing therapeutic hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clinical 'grey zone'. The network's confidence in predicting outcome was based on interpretable features: it strongly correlated to the neural synchrony and complexity of EEG responses and was modulated by independent clinical evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve prognostication of coma outcome.


Assuntos
Aprendizado Profundo , Parada Cardíaca , Humanos , Coma/etiologia , Coma/terapia , Estimulação Acústica , Eletroencefalografia/métodos , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Prognóstico
12.
Neuroimage ; 263: 119579, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995374

RESUMO

Survival in biological environments requires learning associations between predictive sensory cues and threatening outcomes. Such aversive learning may be implemented through reinforcement learning algorithms that are driven by the signed difference between expected and encountered outcomes, termed prediction errors (PEs). While PE-based learning is well established for reward learning, the role of putative PE signals in aversive learning is less clear. Here, we used functional magnetic resonance imaging in humans (21 healthy men and women) to investigate the neural representation of PEs during maintenance of learned aversive associations. Four visual cues, each with a different probability (0, 33, 66, 100%) of being followed by an aversive outcome (electric shock), were repeatedly presented to participants. We found that neural activity at omission (US-) but not occurrence of the aversive outcome (US+) encoded PEs in the medial prefrontal cortex. More expected omission of aversive outcome was associated with lower neural activity. No neural signals fulfilled axiomatic criteria, which specify necessary and sufficient components of PE signals, for signed PE representation in a whole-brain search or in a-priori regions of interest. Our results might suggest that, different from reward learning, aversive learning does not involve signed PE signals that are represented within the same brain region for all conditions.


Assuntos
Condicionamento Clássico , Reforço Psicológico , Masculino , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Recompensa , Aprendizagem da Esquiva , Imageamento por Ressonância Magnética
13.
Patterns (N Y) ; 2(10): 100347, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34693373

RESUMO

Artificial intelligence (AI) has an astonishing potential in assisting clinical decision making and revolutionizing the field of health care. A major open challenge that AI will need to address before its integration in the clinical routine is that of algorithmic bias. Most AI algorithms need big datasets to learn from, but several groups of the human population have a long history of being absent or misrepresented in existing biomedical datasets. If the training data is misrepresentative of the population variability, AI is prone to reinforcing bias, which can lead to fatal outcomes, misdiagnoses, and lack of generalization. Here, we describe the challenges in rendering AI algorithms fairer, and we propose concrete steps for addressing bias using tools from the field of open science.

14.
Neuroimage ; 245: 118638, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624502

RESUMO

An open challenge in consciousness research is understanding how neural functions are altered by pathological loss of consciousness. To maintain consciousness, the brain needs synchronized communication of information across brain regions, and sufficient complexity in neural activity. Coordination of brain activity, typically indexed through measures of neural synchrony, has been shown to decrease when consciousness is lost and to reflect the clinical state of patients with disorders of consciousness. Moreover, when consciousness is lost, neural activity loses complexity, while the levels of neural noise, indexed by the slope of the electroencephalography (EEG) spectral exponent decrease. Although these properties have been well investigated in resting state activity, it remains unknown whether the sensory processing network, which has been shown to be preserved in coma, suffers from a loss of synchronization or information content. Here, we focused on acute coma and hypothesized that neural synchrony in response to auditory stimuli would reflect coma severity, while complexity, or neural noise, would reflect the presence or loss of consciousness. Results showed that neural synchrony of EEG signals was stronger for survivors than non-survivors and predictive of patients' outcome, but indistinguishable between survivors and healthy controls. Measures of neural complexity and neural noise were not informative of patients' outcome and had high or low values for patients compared to controls. Our results suggest different roles for neural synchrony and complexity in acute coma. Synchrony represents a precondition for consciousness, while complexity needs an equilibrium between high or low values to support conscious cognition.


Assuntos
Estimulação Acústica , Coma/fisiopatologia , Estudos de Casos e Controles , Coma/etiologia , Coma/mortalidade , Eletroencefalografia/métodos , Feminino , Parada Cardíaca/complicações , Humanos , Masculino , Projetos Piloto , Prognóstico
15.
Front Hum Neurosci ; 15: 702520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489663

RESUMO

The human brain has the astonishing capacity of integrating streams of sensory information from the environment and forming predictions about future events in an automatic way. Despite being initially developed for visual processing, the bulk of predictive coding research has subsequently focused on auditory processing, with the famous mismatch negativity signal as possibly the most studied signature of a surprise or prediction error (PE) signal. Auditory PEs are present during various consciousness states. Intriguingly, their presence and characteristics have been linked with residual levels of consciousness and return of awareness. In this review we first give an overview of the neural substrates of predictive processes in the auditory modality and their relation to consciousness. Then, we focus on different states of consciousness - wakefulness, sleep, anesthesia, coma, meditation, and hypnosis - and on what mysteries predictive processing has been able to disclose about brain functioning in such states. We review studies investigating how the neural signatures of auditory predictions are modulated by states of reduced or lacking consciousness. As a future outlook, we propose the combination of electrophysiological and computational techniques that will allow investigation of which facets of sensory predictive processes are maintained when consciousness fades away.

16.
J Neurosci Methods ; 364: 109367, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563599

RESUMO

BACKGROUND: Deep learning has revolutionized the field of computer vision, where convolutional neural networks (CNNs) extract complex patterns of information from large datasets. The use of deep networks in neuroscience is mainly focused to neuroimaging or brain computer interface -BCI- applications. In electroencephalography (EEG) research, multivariate pattern analysis (MVPA) mainly relies on linear algorithms, which require a homogeneous dataset and assume that discriminant features appear at consistent latencies and electrodes across trials. However, neural responses may shift in time or space during an experiment, resulting in under-estimation of discriminant features. Here, we aimed at using CNNs to classify EEG responses to external stimuli, by taking advantage of time- and space- unlocked neural activity, and at examining how discriminant features change over the course of an experiment, on a trial by trial basis. NEW METHOD: We present a novel pipeline, consisting of data augmentation, CNN training, and feature visualization techniques, fine-tuned for MVPA on EEG data. RESULTS: Our pipeline provides high classification performance and generalizes to new datasets. Additionally, we show that the features identified by the CNN for classification are electrophysiologically interpretable and can be reconstructed at the single-trial level to study trial-by-trial evolution of class-specific discriminant activity. COMPARISON WITH EXISTING TECHNIQUES: The developed pipeline was compared to commonly used MVPA algorithms like logistic regression and support vector machines, as well as to shallow and deep convolutional neural networks. Our approach yielded significantly higher classification performance than existing MVPA techniques (p = 0.006) and comparable results to other CNNs for EEG data. CONCLUSION: In summary, we present a novel deep learning pipeline for MVPA of EEG data, that can extract trial-by-trial discriminative activity in a data-driven way.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Algoritmos , Redes Neurais de Computação
17.
Neuron ; 109(13): 2047-2074, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34237278

RESUMO

Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers' lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.


Assuntos
Equidade de Gênero , Pesquisadores , Sexismo , Universidades/organização & administração , Feminino , Humanos , Masculino , Pesquisa/organização & administração
18.
J Sleep Res ; 30(5): e13296, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33813771

RESUMO

Narcolepsy type 1 (NT1) is a disorder with well-established markers and a suspected autoimmune aetiology. Conversely, the narcoleptic borderland (NBL) disorders, including narcolepsy type 2, idiopathic hypersomnia, insufficient sleep syndrome and hypersomnia associated with a psychiatric disorder, lack well-defined markers and remain controversial in terms of aetiology, diagnosis and management. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a comprehensive multicentre cohort study, which will investigate the clinical picture, pathophysiology and long-term course of NT1 and the NBL. The primary aim is to validate new and reappraise well-known markers for the characterization of the NBL, facilitating the diagnostic process. Seven Swiss sleep centres, belonging to the Swiss Narcolepsy Network (SNaNe), joined the study and will prospectively enrol over 500 patients with recent onset of excessive daytime sleepiness (EDS), hypersomnia or a suspected central disorder of hypersomnolence (CDH) during a 3-year recruitment phase. Healthy controls and patients with EDS due to severe sleep-disordered breathing, improving after therapy, will represent two control groups of over 50 patients each. Clinical and electrophysiological (polysomnography, multiple sleep latency test, maintenance of wakefulness test) information, and information on psychomotor vigilance and a sustained attention to response task, actigraphy and wearable devices (long-term monitoring), and responses to questionnaires will be collected at baseline and after 6, 12, 24 and 36 months. Potential disease markers will be searched for in blood, cerebrospinal fluid and stool. Analyses will include quantitative hypocretin measurements, proteomics/peptidomics, and immunological, genetic and microbiota studies. SPHYNCS will increase our understanding of CDH and the relationship between NT1 and the NBL. The identification of new disease markers is expected to lead to better and earlier diagnosis, better prognosis and personalized management of CDH.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Estudos de Coortes , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/etiologia , Distúrbios do Sono por Sonolência Excessiva/terapia , Humanos , Estudos Multicêntricos como Assunto , Narcolepsia/diagnóstico , Narcolepsia/terapia , Estudos Observacionais como Assunto , Estudos Prospectivos , Suíça
19.
Neuroimage ; 229: 117742, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454405

RESUMO

Scientific research aims to bring forward innovative ideas and constantly challenges existing knowledge structures and stereotypes. However, women, ethnic and cultural minorities, as well as individuals with disabilities, are systematically discriminated against or even excluded from promotions, publications, and general visibility. A more diverse workforce is more productive, and thus discrimination has a negative impact on science and the wider society, as well as on the education, careers, and well-being of individuals who are discriminated against. Moreover, the lack of diversity at scientific gatherings can lead to micro-aggressions or harassment, making such meetings unpleasant, or even unsafe environments for early career and underrepresented scientists. At the Organization for Human Brain Mapping (OHBM), we recognized the need for promoting underrepresented scientists and creating diverse role models in the field of neuroimaging. To foster this, the OHBM has created a Diversity and Inclusivity Committee (DIC). In this article, we review the composition and activities of the DIC that have promoted diversity within OHBM, in order to inspire other organizations to implement similar initiatives. Activities of the committee over the past four years have included (a) creating a code of conduct, (b) providing diversity and inclusivity education for OHBM members, (c) organizing interviews and symposia on diversity issues, and (d) organizing family-friendly activities and providing childcare grants during the OHBM annual meetings. We strongly believe that these activities have brought positive change within the wider OHBM community, improving inclusivity and fostering diversity while promoting rigorous, ground-breaking science. These positive changes could not have been so rapidly implemented without the enthusiastic support from the leadership, including OHBM Council and Program Committee, and the OHBM Special Interest Groups (SIGs), namely the Open Science, Student and Postdoc, and Brain-Art SIGs. Nevertheless, there remains ample room for improvement, in all areas, and even more so in the area of targeted attempts to increase inclusivity for women, individuals with disabilities, members of the LGBTQ+ community, racial/ethnic minorities, and individuals of lower socioeconomic status or from low and middle-income countries. Here, we present an overview of the DIC's composition, its activities, future directions and challenges. Our goal is to share our experiences with a wider audience to provide information to other organizations and institutions wishing to implement similar comprehensive diversity initiatives. We propose that scientific organizations can push the boundaries of scientific progress only by moving beyond existing power structures and by integrating principles of equity and inclusivity in their core values.


Assuntos
Centros Médicos Acadêmicos/métodos , Mapeamento Encefálico/métodos , Diversidade Cultural , Preconceito/etnologia , Preconceito/prevenção & controle , Sociedades Científicas , Centros Médicos Acadêmicos/tendências , Mapeamento Encefálico/tendências , Criatividade , Pessoas com Deficiência , Etnicidade , Humanos , Preconceito/psicologia , Sociedades Científicas/tendências
20.
J Neural Eng ; 17(5): 051001, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32916678

RESUMO

By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.


Assuntos
Eletrocorticografia , Eletroencefalografia , Animais , Percepção Auditiva , Encéfalo , Cognição , Humanos , Memória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA