Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 14(1): 687, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755042

RESUMO

Emerging variants of concern (VOCs) are threatening to limit the effectiveness of SARS-CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells of convalescent patients using SARS-CoV-2 receptor binding domains carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and 5). Both antibodies broadly neutralize VOCs, exceeding the potency of the clinical monoclonal sotrovimab (S309) by orders of magnitude. They also provide prophylactic and therapeutic in vivo protection of female hACE2 mice against viral challenge. Our results indicate that exposure to SARS-CoV-2 induces antibodies that maintain broad neutralization against emerging VOCs using two unique strategies: either by targeting the divergent class 1 epitope in a manner resistant to VOCs (ACE2 mimicry, as illustrated by GAR05 and mAbs P2C-1F11/S2K14); or alternatively, by targeting rare and highly conserved epitopes, such as the new class 6 epitope identified here (as illustrated by GAR12). Our results provide guidance for next generation monoclonal antibody development and vaccine design.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Leucócitos Mononucleares , Anticorpos Antivirais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Testes de Neutralização
2.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36336952

RESUMO

The CRISPR genome editing technology holds great clinical potential for the treatment of monogenetic disorders such as sickle cell disease. The therapeutic in vivo application of the technology relies on targeted delivery methods of the Cas9 and gRNA complex to specific cells or tissues. However, such methods are currently limited to direct organ delivery, preventing clinical application. Here, we show that monoclonal antibodies can be employed to deliver the Cas9/gRNA complex directly into human cells via cell-surface receptors. Using the SpyCatcher/SpyTag system, we conjugated the Fab fragment of the therapeutic antibodies Trastuzumab and Pertuzumab directly to the Cas9 enzyme and observed HER2-specific uptake of the ribonucleoprotein in a human HER2 expressing cell line. Following cellular uptake in the presence of an endosomolytic peptide, modest gene editing was also observed. This finding provides a blueprint for the targeted delivery of the CRISPR technology into specific cells using monoclonal antibodies.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Edição de Genes , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo
3.
Sci Rep ; 11(1): 14881, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290285

RESUMO

Identified genetic mutations cause 20% of frontotemporal dementia (FTD) and 5-10% of amyotrophic lateral sclerosis (ALS) cases: however, for the remainder of patients the origin of disease is uncertain. The overlap in genetic, clinical and pathological presentation of FTD and ALS suggests these two diseases are related. Post-mortem, ~ 95% of ALS and ~ 50% of FTD patients show redistribution of the nuclear protein TDP-43 to the cytoplasm within affected neurons, while ~ 5% ALS and ~ 10% FTD show mislocalisation of FUS protein. We exploited these neuropathological features to develop an unbiased method for the in vitro quantification of cytoplasmic TDP-43 and FUS. Utilising fluorescently-tagged cDNA constructs and immunocytochemistry, the fluorescence intensity of TDP-43 or FUS was measured in the nucleus and cytoplasm of cells, using the freely available software CellProfiler. Significant increases in the amount of cytoplasmic TDP-43 and FUS were detectable in cells expressing known FTD/ALS-causative TARDBP and FUS gene mutations. Pharmacological intervention with the apoptosis inducer staurosporine and mutation in a secondary gene (CYLD) also induced measurable cytoplasmic mislocalisation of endogenous FUS and TDP-43, respectively. These findings validate this methodology as a novel in vitro technique for the quantification of TDP-43 or FUS mislocalisation that can be used for initial prioritisation of predicted FTD/ALS-causative mutations.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Testes Genéticos/métodos , Mutação/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Citoplasma/genética , Citoplasma/metabolismo , Enzima Desubiquitinante CYLD/genética , Humanos , Neurônios/citologia , Neurônios/metabolismo , Estaurosporina/genética
4.
MAbs ; 13(1): 1922134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024246

RESUMO

Antibodies against coronavirus spike protein potently protect against infection and disease, but whether such protection can be extended to variant coronaviruses is unclear. This is exemplified by a set of iconic and well-characterized monoclonal antibodies developed after the 2003 SARS outbreak, including mAbs m396, CR3022, CR3014 and 80R, which potently neutralize SARS-CoV-1, but not SARS-CoV-2. Here, we explore antibody engineering strategies to change and broaden their specificity, enabling nanomolar binding and potent neutralization of SARS-CoV-2. Intriguingly, while many of the matured clones maintained specificity of the parental antibody, new specificities were also observed, which was further confirmed by X-ray crystallography and cryo-electron microscopy, indicating that a limited set of VH antibody domains can give rise to variants targeting diverse epitopes, when paired with a diverse VL repertoire. Our findings open up over 15 years of antibody development efforts against SARS-CoV-1 to the SARS-CoV-2 field and outline general principles for the maturation of antibody specificity against emerging viruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Especificidade de Anticorpos , Reações Cruzadas , Humanos , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA