Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 282(28): 20698-704, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17517893

RESUMO

A complex of gamma, epsilon, and c subunits rotates in ATP synthase (FoF(1)) coupled with proton transport. A gold bead connected to the gamma subunit of the Escherichia coli F(1) sector exhibited stochastic rotation, confirming a previous study (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126-4131). A similar approach was taken for mutations in the beta subunit key region; consistent with its bulk phase ATPase activities, F(1) with the Ser-174 to Phe substitution (betaS174F) exhibited a slower single revolution time (time required for 360 degree revolution) and paused almost 10 times longer than the wild type at one of the three 120 degrees positions during the stepped revolution. The pause positions were probably not at the "ATP waiting" dwell but at the "ATP hydrolysis/product release" dwell, since the ATP concentration used for the assay was approximately 30-fold higher than the K(m) value for ATP. A betaGly-149 to Ala substitution in the phosphate binding P-loop suppressed the defect of betaS174F. The revertant (betaG149A/betaS174F) exhibited similar rotation to the wild type, except that it showed long pauses less frequently. Essentially the same results were obtained with the Ser-174 to Leu substitution and the corresponding revertant betaG149A/betaS174L. These results indicate that the domain between beta-sheet 4 (betaSer-174) and P-loop (betaGly-149) is important to drive rotation.


Assuntos
Trifosfato de Adenosina/química , ATPases Bacterianas Próton-Translocadoras/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Domínio Catalítico/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
2.
J Biol Chem ; 278(10): 8580-5, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12496271

RESUMO

Transcription elongation factor S-II stimulates cleavage of nascent transcripts generated by RNA polymerase II stalled at transcription arrest sites. In vitro experiments have shown that this action promotes RNA polymerase II to read through these transcription arrest sites. This S-II-mediated cleavage is thought to be necessary, but not sufficient, to promote read-through in the in vitro systems. Therefore, Saccharomyces cerevisiae strains expressing S-II mutant proteins with different in vitro activities were used to study both the cleavage and the read-through stimulation activities of S-II to determine which S-II functions are responsible for its biologic functions. Strains expressing mutant S-II proteins active in both cleavage and read-through stimulation were as resistant as wild type strains to 6-azauracil and mycophenolic acid. 6-Azauracil also induced IMD2 gene expression in both these mutant strains and the wild type. Furthermore, strains having a genotype consisting of one of these S-II mutations and the spt4 null mutation grew as well as the spt4 null mutant at 37 degrees C, a restrictive temperature for a strain bearing double null mutations of spt4 and S-II. In contrast, strains bearing S-II mutations defective in both cleavage and read-through stimulation had phenotypes similar to those of an S-II null mutant. However, one strain expressing a mutant S-II protein active only in cleavage stimulation had a phenotype similar to that of the wild type strain. These results suggest that cleavage, but not read-through, stimulation activity is responsible for all three biologic functions of S-II (i.e. suppression of 6-azauracil sensitivity, induction of the IMD2 gene, and suppression of temperature sensitivity of spt4 null mutant).


Assuntos
Saccharomyces cerevisiae/metabolismo , Fatores Genéricos de Transcrição/fisiologia , Fatores de Elongação da Transcrição , Sequência de Bases , Northern Blotting , Western Blotting , Primers do DNA , Técnica Indireta de Fluorescência para Anticorpo , Genes Fúngicos , Hidrólise , Mutagênese Sítio-Dirigida , Saccharomyces cerevisiae/genética , Temperatura , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA