Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648902

RESUMO

SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.


Assuntos
COVID-19 , Endorribonucleases , Proteínas Serina-Treonina Quinases , SARS-CoV-2 , Resposta a Proteínas não Dobradas , Replicação Viral , Proteína 1 de Ligação a X-Box , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , SARS-CoV-2/metabolismo , Humanos , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , COVID-19/imunologia , Camundongos , Mesocricetus , Transdução de Sinais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Feminino
2.
J Virol ; 96(1): e0151121, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668780

RESUMO

The development of mouse models for coronavirus disease 2019 (COVID-19) has enabled testing of vaccines and therapeutics and defining aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. SARS-CoV-2 disease is severe in K18 transgenic mice (K18-hACE2 Tg) expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, under an ectopic cytokeratin promoter, with high levels of infection measured in the lung and brain. Here, we evaluated SARS-CoV-2 infection in hACE2 knock-in (KI) mice that express hACE2 under an endogenous promoter in place of murine ACE2 (mACE2). Intranasal inoculation of hACE2 KI mice with SARS-CoV-2 WA1/2020 resulted in substantial viral replication within the upper and lower respiratory tracts with limited spread to extrapulmonary organs. However, SARS-CoV-2-infected hACE2 KI mice did not lose weight and developed limited pathology. Moreover, no significant differences in viral burden were observed in hACE2 KI mice infected with B.1.1.7 or B.1.351 variants compared to the WA1/2020 strain. Because the entry mechanisms of SARS-CoV-2 in mice remain uncertain, we evaluated the impact of the naturally occurring, mouse-adapting N501Y mutation by comparing infection of hACE2 KI, K18-hACE2 Tg, ACE2-deficient, and wild-type C57BL/6 mice. The N501Y mutation minimally affected SARS-CoV-2 infection in hACE2 KI mice but was required for viral replication in wild-type C57BL/6 mice in a mACE2-dependent manner and augmented pathogenesis in the K18-hACE2 Tg mice. Thus, the N501Y mutation likely enhances interactions with mACE2 or hACE2 in vivo. Overall, our study highlights the hACE2 KI mice as a model of mild SARS-CoV-2 infection and disease and clarifies the requirement of the N501Y mutation in mice. IMPORTANCE Mouse models of SARS-CoV-2 pathogenesis have facilitated the rapid evaluation of countermeasures. While the first generation of models developed pneumonia and severe disease after SARS-CoV-2 infection, they relied on ectopic expression of supraphysiological levels of human ACE2 (hACE2). This has raised issues with their relevance to humans, as the hACE2 receptor shows a more restricted expression pattern in the respiratory tract. Here, we evaluated SARS-CoV-2 infection and disease with viruses containing or lacking a key mouse-adapting mutation in the spike gene in hACE2 KI mice, which express hACE2 under an endogenous promoter in place of murine ACE2. While infection of hACE2 KI mice with multiple strains of SARS-CoV-2 including variants of concern resulted in viral replication within the upper and lower respiratory tracts, the animals did not sustain severe lung injury. Thus, hACE2 KI mice serve as a model of mild infection with both ancestral and emerging SARS-CoV-2 variant strains.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/virologia , Pulmão/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Inflamação , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Mutação , SARS-CoV-2/genética , Carga Viral , Replicação Viral
3.
Vaccines (Basel) ; 9(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204268

RESUMO

Fc-dependent effector functions are an important determinant of the in vivo potency of therapeutic antibodies. Effector function is determined by the combination of FcRs bound by the antibody and the cell expressing the relevant FcRs, leading to antibody-dependent cellular cytotoxicity (ADCC). A number of ADCC assays have been developed; however, they suffer from limitations in terms of throughput, reproducibility, and in vivo relevance. Existing assays measure NK cell-mediated ADCC activity; however, studies suggest that macrophages mediate the effector function of many antibodies in vivo. Here, we report the development of a macrophage-based ADCC assay that relies on luciferase expression in target cells as a measure of live cell number. In the presence of primary mouse macrophages and specific antibodies, loss of luciferase signal serves as a surrogate for ADCC-dependent killing. We show that the assay functions for a variety of mouse and human isotypes with a model antigen/antibody complex in agreement with the known effector function of the isotypes. We also use this assay to measure the activity of a number of influenza-specific antibodies and show that the assay correlates well with the known in vivo effector functions of these antibodies.

4.
Science ; 371(6532): 926-931, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33495306

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins interact with the eukaryotic translation machinery, and inhibitors of translation have potent antiviral effects. We found that the drug plitidepsin (aplidin), which has limited clinical approval, possesses antiviral activity (90% inhibitory concentration = 0.88 nM) that is more potent than remdesivir against SARS-CoV-2 in vitro by a factor of 27.5, with limited toxicity in cell culture. Through the use of a drug-resistant mutant, we show that the antiviral activity of plitidepsin against SARS-CoV-2 is mediated through inhibition of the known target eEF1A (eukaryotic translation elongation factor 1A). We demonstrate the in vivo efficacy of plitidepsin treatment in two mouse models of SARS-CoV-2 infection with a reduction of viral replication in the lungs by two orders of magnitude using prophylactic treatment. Our results indicate that plitidepsin is a promising therapeutic candidate for COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Depsipeptídeos/farmacologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Antivirais/uso terapêutico , COVID-19/prevenção & controle , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/biossíntese , Proteínas do Nucleocapsídeo de Coronavírus/genética , Depsipeptídeos/administração & dosagem , Depsipeptídeos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Humanos , Pulmão/virologia , Camundongos Endogâmicos C57BL , Mutação , Peptídeos Cíclicos , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , RNA Viral/biossíntese , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
5.
Emerg Microbes Infect ; 9(1): 2433-2445, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33073694

RESUMO

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2) [1-3]. Due to amino acid differences between murine and hACE2, inbred mouse strains fail to support high titer viral replication of SARS-CoV-2 virus. Therefore, a number of transgenic and knock-in mouse models, as well as viral vector-mediated hACE2 delivery systems have been developed. Here we compared the K18-hACE2 transgenic model to adenovirus-mediated delivery of hACE2 to the mouse lung. We show that K18-hACE2 mice replicate virus to high titers in the nasal turbinates, lung and brain, with high lethality, and cytokine/chemokine production. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the nasal turbinates and lung, and no clinical signs of infection. The K18-hACE2 model provides a stringent model for testing vaccines and antivirals, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.


Assuntos
Betacoronavirus/crescimento & desenvolvimento , Infecções por Coronavirus/patologia , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/crescimento & desenvolvimento , Replicação Viral/genética , Células A549 , Adenoviridae/genética , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/metabolismo , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2 , Células Vero , Ligação Viral
6.
Viruses ; 12(7)2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635475

RESUMO

The host tropism of viral infection is determined by a variety of factors, from cell surface receptors to innate immune signaling. Many viruses encode proteins that interfere with host innate immune recognition in order to promote infection. STAT2 is divergent between species and therefore has a role in species restriction of some viruses. To understand the role of STAT2 in human metapneumovirus (HMPV) infection of human and murine tissues, we first infected STAT2-/- mice and found that HMPV could be serially passaged in STAT2-/-, but not WT, mice. We then used in vitro methods to show that HMPV inhibits expression of both STAT1 and STAT2 in human and primate cells, but not in mouse cells. Transfection of the murine form of STAT2 into STAT2-deficient human cells conferred resistance to STAT2 inhibition. Finally, we sought to understand the in vivo role of STAT2 by infecting hSTAT2 knock-in mice with HMPV, and found that mice had increased weight loss, inhibition of type I interferon signaling, and a Th2-polarized cytokine profile compared to WT mice. These results indicate that STAT2 is a target of HMPV in human infection, while the murine version of STAT2 restricts tropism of HMPV for murine cells and tissue.


Assuntos
Metapneumovirus/fisiologia , Infecções por Paramyxoviridae/imunologia , Fator de Transcrição STAT2/imunologia , Animais , Feminino , Especificidade de Hospedeiro , Humanos , Imunidade Inata , Interferons/genética , Interferons/imunologia , Masculino , Metapneumovirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Paramyxoviridae/genética , Infecções por Paramyxoviridae/virologia , Fator de Transcrição STAT2/genética , Células Th2
7.
Cell Rep ; 31(1): 107498, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268088

RESUMO

The Toll/IL-1R-domain-containing adaptor protein SARM1 is expressed primarily in the brain, where it mediates axonal degeneration. Roles for SARM1 in TLR signaling, viral infection, inflammasome activation, and chemokine and Xaf1 expression have also been described. Much of the evidence for SARM1 function relies on SARM1-deficient mice generated in 129 ESCs and backcrossed to B6. The Sarm1 gene lies in a gene-rich region encompassing Xaf1 and chemokine loci, which remain 129 in sequence. We therefore generated additional knockout strains on the B6 background, confirming the role of SARM1 in axonal degeneration and WNV infection, but not in VSV or LACV infection, or in chemokine or Xaf1 expression. Sequence variation in proapoptotic Xaf1 between B6 and 129 results in coding changes and distinct splice variants, which may account for phenotypes previously attributed to SARM1. Reevaluation of phenotypes in these strains will be critical for understanding the function of SARM1.


Assuntos
Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Axônios/metabolismo , Encéfalo/metabolismo , Encefalite da Califórnia/genética , Oftalmopatias Hereditárias , Feminino , Vírus La Crosse , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Fenótipo , Receptores de Interleucina-1/metabolismo , Degeneração Retiniana , Transdução de Sinais/genética , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transtornos da Visão , Febre do Nilo Ocidental/genética
8.
Cell Rep ; 25(10): 2784-2796.e3, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517866

RESUMO

Type I and type III interferons (IFNs) are critical for controlling viral infections. However, the precise dynamics of the IFN response have been difficult to define in vivo. Signaling through type I IFN receptors leads to interferon-stimulated response element (ISRE)-dependent gene expression and an antiviral state. As an alternative to tracking IFN, we used an ISRE-dependent reporter mouse to define the cell types, localization, and kinetics of IFN responding cells during influenza virus infection. We find that measurable IFN responses are largely limited to hematopoietic cells, which show a high sensitivity to IFN. Inflammatory monocytes display high basal IFN responses, which are enhanced upon infection and correlate with infection of these cells. We find that inflammatory monocyte development is independent of IFN signaling; however, IFN is critical for chemokine production and recruitment following infection. The data reveal a role for inflammatory monocytes in both basal IFN responses and responses to infection.


Assuntos
Genes Reporter , Interferon Tipo I/metabolismo , Monócitos/patologia , Elementos de Resposta/genética , Alelos , Animais , Antígenos Ly/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Inflamação/patologia , Pulmão/virologia , Linfonodos/virologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Orthomyxoviridae/fisiologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais
9.
Cell Host Microbe ; 23(5): 672-685.e6, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29746837

RESUMO

Progress toward understanding Zika virus (ZIKV) pathogenesis is hindered by lack of immunocompetent small animal models, in part because ZIKV fails to effectively antagonize Stat2-dependent interferon (IFN) responses in mice. To address this limitation, we first passaged an African ZIKV strain (ZIKV-Dak-41525) through Rag1-/- mice to obtain a mouse-adapted virus (ZIKV-Dak-MA) that was more virulent than ZIKV-Dak-41525 in mice treated with an anti-Ifnar1 antibody. A G18R substitution in NS4B was the genetic basis for the increased replication, and resulted in decreased IFN-ß production, diminished IFN-stimulated gene expression, and the greater brain infection observed with ZIKV-Dak-MA. To generate a fully immunocompetent mouse model of ZIKV infection, human STAT2 was introduced into the mouse Stat2 locus (hSTAT2 KI). Subcutaneous inoculation of pregnant hSTAT2 KI mice with ZIKV-Dak-MA resulted in spread to the placenta and fetal brain. An immunocompetent mouse model of ZIKV infection may prove valuable for evaluating countermeasures to limit disease.


Assuntos
Camundongos/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Zika virus/patogenicidade , Animais , Encéfalo , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/virologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imunidade , Transmissão Vertical de Doenças Infecciosas , Interferon beta/metabolismo , Interferons/metabolismo , Camundongos/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Placenta/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/virologia , RNA Helicases/genética , Receptor de Interferon alfa e beta , Fator de Transcrição STAT2/metabolismo , Serina Endopeptidases/genética , Proteínas não Estruturais Virais/genética , Zika virus/genética , Infecção por Zika virus/virologia
10.
Nat Commun ; 8(1): 846, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018261

RESUMO

The aim of candidate universal influenza vaccines is to provide broad protection against influenza A and B viruses. Studies have demonstrated that broadly reactive antibodies require Fc-Fc gamma receptor interactions for optimal protection; however, the innate effector cells responsible for mediating this protection remain largely unknown. Here, we examine the roles of alveolar macrophages, natural killer cells, and neutrophils in antibody-mediated protection. We demonstrate that alveolar macrophages play a dominant role in conferring protection provided by both broadly neutralizing and non-neutralizing antibodies in mice. Our data also reveal the potential mechanisms by which alveolar macrophages mediate protection in vivo, namely antibody-induced inflammation and antibody-dependent cellular phagocytosis. This study highlights the importance of innate effector cells in establishing a broad-spectrum antiviral state, as well as providing a better understanding of how multiple arms of the immune system cooperate to achieve an optimal antiviral response following influenza virus infection or immunization.Broadly reactive antibodies that recognize influenza A virus HA can be protective, but the mechanism is not completely understood. Here, He et al. show that the inflammatory response and phagocytosis mediated by the interaction between protective antibodies and macrophages are essential for protection.


Assuntos
Anticorpos Neutralizantes/fisiologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Ativação de Macrófagos , Macrófagos Alveolares/fisiologia , Células A549 , Animais , Cães , Feminino , Células HEK293 , Hemaglutininas/imunologia , Humanos , Células Matadoras Naturais/fisiologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/fisiologia , Infecções por Orthomyxoviridae/imunologia , Fagocitose , Receptores de IgG/metabolismo
11.
Methods Mol Biol ; 1390: 249-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26803634

RESUMO

High titers of autoantibodies reactive with DNA/RNA molecular complexes are characteristic of autoimmune disorders such as systemic lupus erythematosus (SLE). In vitro and in vivo studies have implicated the endosomal Toll-like receptor 9 (TLR9) and Toll-like receptor 7 (TLR7) in the activation of the corresponding autoantibody producing B cells. Importantly, TLR9/TLR7-deficiency results in the inability of autoreactive B cells to proliferate in response to DNA/RNA-associated autoantigens in vitro, and in marked changes in the autoantibody repertoire of autoimmune-prone mice. Uptake of DNA/RNA-associated autoantigen immune complexes (ICs) also leads to activation of dendritic cells (DCs) through TLR9 and TLR7. The initial studies from our lab involved ICs formed by a mixture of autoantibodies and cell debris released from dying cells in culture. To better understand the nature of the mammalian ligands that can effectively activate TLR7 and TLR9, we have developed a methodology for preparing ICs containing defined DNA fragments that recapitulate the immunostimulatory activity of the previous "black box" ICs. As the endosomal TLR7 and TLR9 function optimally from intracellular acidic compartments, we developed a facile methodology to monitor the trafficking of defined DNA ICs by flow cytometry and confocal microscopy. These reagents reveal an important role for nucleic acid sequence, even when the ligand is mammalian DNA and will help illuminate the role of IC trafficking in the response.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ativação Linfocitária/imunologia , Receptores Toll-Like/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Confocal , Transporte Proteico
12.
mBio ; 5(2): e01006-14, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24692634

RESUMO

The cytoplasmic helicase RIG-I is an established sensor for viral 5'-triphosphorylated RNA species. Recently, RIG-I was also implicated in the detection of intracellular bacteria. However, little is known about the host cell specificity of this process and the bacterial pathogen-associated molecular pattern (PAMP) that activates RIG-I. Here we show that RNA of Salmonella enterica serovar Typhimurium activates production of beta interferon in a RIG-I-dependent fashion only in nonphagocytic cells. In phagocytic cells, RIG-I is obsolete for detection of Salmonella infection. We further demonstrate that Salmonella mRNA reaches the cytoplasm during infection and is thus accessible for RIG-I. The results from next-generation sequencing analysis of RIG-I-associated RNA suggest that coding bacterial mRNAs represent the activating PAMP. IMPORTANCE S. Typhimurium is a major food-borne pathogen. After fecal-oral transmission, it can infect epithelial cells in the gut as well as immune cells (mainly macrophages, dendritic cells, and M cells). The innate host immune system relies on a growing number of sensors that detect pathogen-associated molecular patterns (PAMPs) to launch a first broad-spectrum response to invading pathogens. Successful detection of a given pathogen depends on colocalization of host sensors and PAMPs as well as potential countermeasures of the pathogen during infection. RIG-I-like helicases were mainly associated with detection of RNA viruses. Our work shows that S. Typhimurium is detected by RIG-I during infection specifically in nonimmune cells.


Assuntos
RNA Helicases DEAD-box/imunologia , Interações Hospedeiro-Patógeno , RNA Bacteriano/imunologia , RNA Mensageiro/imunologia , Receptores Imunológicos/imunologia , Salmonella typhimurium/imunologia , Animais , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Humanos , Interferon beta/imunologia , Interferon beta/metabolismo , Camundongos , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Receptores Imunológicos/metabolismo
13.
J Immunol ; 191(2): 875-83, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23749635

RESUMO

Four of the five members of the Toll/IL-1R domain-containing adaptor family are required for signaling downstream of TLRs, promoting innate immune responses against different pathogens. However, the role of the fifth member of this family, sterile α and Toll/IL-1R domain-containing 1 (SARM), is unclear. SARM is expressed primarily in the CNS where it is required for axonal death. Studies in Caenorhabditis elegans have also shown a role for SARM in innate immunity. To clarify the role of mammalian SARM in innate immunity, we infected SARM(-/-) mice with a number of bacterial and viral pathogens. SARM(-/-) mice show normal responses to Listeria monocytogenes, Mycobacterium tuberculosis, and influenza virus, but show dramatic protection from death after CNS infection with vesicular stomatitis virus. Protection correlates with reduced CNS injury and cytokine production by nonhematopoietic cells, suggesting that SARM is a positive regulator of cytokine production. Neurons and microglia are the predominant source of cytokines in vivo, supporting a role for SARM as a link between neuronal injury and innate immunity.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Viroses do Sistema Nervoso Central/imunologia , Proteínas do Citoesqueleto/metabolismo , Infecções por Rhabdoviridae/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/imunologia , Células da Medula Óssea , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/metabolismo , Citocinas/biossíntese , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/imunologia , Imunidade Inata , Vírus da Influenza A/imunologia , Listeria monocytogenes/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Mycobacterium tuberculosis/imunologia , Neurônios/metabolismo , Infecções por Rhabdoviridae/metabolismo
14.
Immunol Lett ; 143(1): 85-91, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22285306

RESUMO

Systemic autoimmune diseases are characterized by the development of autoantibodies directed against a limited subset of nuclear antigens, including DNA. DNA-specific B cells take up mammalian DNA through their B cell receptor, and this DNA is subsequently transported to an endosomal compartment where it can potentially engage TLR9. We have previously shown that ssDNA-specific B cells preferentially bind to particular DNA sequences, and antibody specificity for short synthetic oligodeoxynucleotides (ODNs). Since CpG-rich DNA, the ligand for TLR9 is found in low abundance in mammalian DNA, we sought to determine whether antibodies derived from DNA-reactive B cells showed binding preference for CpG-rich native dsDNA, and thereby select immunostimulatory DNA for delivery to TLR9. We examined a panel of anti-DNA antibodies for binding to CpG-rich and CpG-poor DNA fragments. We show that a number of anti-DNA antibodies do show preference for binding to certain native dsDNA fragments of differing sequence, but this does not correlate directly with the presence of CpG dinucleotides. An antibody with preference for binding to a fragment containing optimal CpG motifs was able to promote B cell proliferation to this fragment at 10-fold lower antibody concentrations than an antibody that did not selectively bind to this fragment, indicating that antibody binding preference can influence autoreactive B cell responses.


Assuntos
Anticorpos Antinucleares/imunologia , Ilhas de CpG , DNA/imunologia , Animais , Especificidade de Anticorpos , Linfócitos B/citologia , Linfócitos B/imunologia , Proliferação de Células , Células Cultivadas , DNA/química , Camundongos , Camundongos Endogâmicos BALB C
15.
Eur J Immunol ; 40(10): 2692-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20809520

RESUMO

Crosslinking of Fc γ receptor II B (FcγRIIB) and the BCR by immune complexes (IC) can downregulate antigen-specific B-cell responses. Accordingly, FcγRIIB deficiencies have been associated with B-cell hyperactivity in patients with systemic lupus erythematosus and mouse models of lupus. However, we have previously shown that murine IgG2a-autoreactive AM14 B cells respond robustly to chromatin-associated IC through a mechanism dependent on both the BCR and the endosomal TLR9, despite FcγRIIB coexpression. To further evaluate the potential contribution of FcγRIIB to the regulation of autoreactive B cells, we have now compared the IC-triggered responses of FcγRIIB-deficient and FcγRIIB-sufficient AM14 B cells. We find that FcγRIIB-deficient cells respond significantly better than FcγRIIB-sufficient cells when stimulated with DNA IC that incorporate low-affinity TLR9 ligand (CG-poor dsDNA fragments). AM14 B cells also respond to RNA-associated IC through BCR/TLR7 coengagement, but such BCR/TLR7-dependent responses are normally highly dependent on IFN-α costimulation. However, we now show that AM14 FcγRIIB(-/-) B cells are very effectively activated by RNA IC without supplemental IFN-α priming. These results demonstrate that FcγRIIB can effectively modulate both BCR/TLR9 and BCR/TLR7 endosomal-dependent activation of autoreactive B cells.


Assuntos
Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de IgG/imunologia , Receptor Toll-Like 9/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Autoantígenos/imunologia , Autoimunidade/imunologia , Comunicação Celular/imunologia , Linhagem Celular , Ativação Linfocitária , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Organismos Livres de Patógenos Específicos
16.
J Immunol ; 183(5): 3109-17, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19648272

RESUMO

Although TLR9 was originally thought to specifically recognize microbial DNA, it is now evident that mammalian DNA can be an effective TLR9 ligand. However, the DNA sequence required for TLR9 activation is controversial, as studies have shown conflicting results depending on the nature of the DNA backbone, the route of DNA uptake, and the cell type being studied. In systemic lupus erythematosus, a major route whereby DNA gains access to intracellular TLR9, and thereby activates dendritic cells (DCs), is through uptake as a DNA-containing immune complex. In this report, we used defined dsDNA fragments with a natural (phosphodiester) backbone and show that unmethylated CpG dinucleotides within dsDNA are required for murine DC TLR9 activation induced by a DNA-containing immune complex. The strongest activation is seen with dsDNA fragments containing optimal CpG motifs (purine-purine-CpG-pyrimidine-pyrimidine) that are common in microbial DNA but rare in mammalian DNA. Importantly, however, activation can also be induced by CpG-rich DNA fragments that lack these optimal CpG motifs and that we show are plentiful in CpG islands within mammalian DNA. No activation is induced by DNA fragments lacking CpG dinucleotides, although this CpG-free DNA can induce DC activation if internalized by liposomal transfection instead of as an immune complex. Overall, the data suggest that the release of CpG-rich DNA from mammalian DNA may contribute to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus and psoriasis in which activation of TLR9 in DCs by self DNA has been implicated in disease pathogenesis.


Assuntos
Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/genética , Ilhas de CpG/imunologia , DNA/química , DNA/fisiologia , Células Dendríticas/imunologia , Oligonucleotídeos Fosforotioatos/fisiologia , Receptor Toll-Like 9/fisiologia , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/fisiologia , Animais , Complexo Antígeno-Anticorpo/fisiologia , Células Cultivadas , Ilhas de CpG/genética , DNA/metabolismo , Fragmentação do DNA , Metilação de DNA/imunologia , Células Dendríticas/química , Células Dendríticas/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/genética , Psoríase/genética , Psoríase/imunologia , Psoríase/metabolismo , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/metabolismo
17.
Methods Mol Biol ; 517: 363-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19378022

RESUMO

High titers of autoantibodies reactive with DNA/RNA molecular complexes are characteristic of autoimmune disorders such as systemic lupus erythematosus (SLE). In vitro and in vivo studies have implicated Toll-like receptor 9 (TLR9) and Toll-like receptor 7 (TLR7) in the activation of the corresponding autoantibody producing B cells. Importantly, TLR9/TLR7-deficiency results in the inability of autoreactive B cells to proliferate in response to DNA/RNA-associated autoantigens in vitro, and in marked changes in the autoantibody repertoire of autoimmune-prone mice. Uptake of DNA/RNA-associated autoantigen immune complexes (ICs) also leads to activation of dendritic cells (DCs) through TLR9 and TLR7.The initial studies from our lab involved ICs formed by a mixture of autoantibodies and cell debris released from dying cells in culture. To better understand the nature of the mammalian ligands that can effectively activate TLR7 and TLR9, we have developed a methodology for preparing ICs containing defined DNA fragments that recapitulate the immunostimulatory activity of the previous "black box" ICs. These reagents reveal an important role for nucleic acid sequence, even when the ligand is mammalian DNA.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Linfócitos B/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Receptores Toll-Like/análise , Receptores Toll-Like/imunologia , Animais , Linfócitos B/citologia , Proliferação de Células , Células Cultivadas , Citocinas/análise , Citocinas/imunologia , DNA/genética , DNA/isolamento & purificação , Camundongos , RNA/genética , RNA/isolamento & purificação
18.
J Immunol ; 181(9): 5875-84, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18941176

RESUMO

Autoreactive B cells are activated by DNA, chromatin, or chromatin-containing immune complexes (ICs) through a mechanism dependent on dual engagement of the BCR and TLR9. We examined the contribution of endogenous DNA sequence elements to this process. DNA sequence can determine both recognition by the BCR and by TLR9. DNA fragments containing CpG islands, a natural source of unmethylated CpG dinucleotides, promote the activation of DNA-reactive B cells derived from BCR transgenic mice as well as DNA-reactive B cells present in the normal repertoire. ICs containing these CpG island fragments are potent ligands for AM14 IgG2a-reactive B cells. In contrast, ICs containing total mammalian DNA, or DNA fragments lacking immunostimulatory motifs, fail to induce B cell proliferation, indicating that BCR crosslinking alone is insufficient to activate low-affinity autoreactive B cells. Importantly, priming B cells with IFN-alpha lowers the BCR activation threshold and relaxes the selectivity for CpG-containing DNA. Taken together, our findings underscore the importance of endogenous CpG-containing DNAs in the TLR9-dependent activation of autoreactive B cells and further identify an important mechanism through which IFN-alpha can contribute to the pathogenesis of systemic lupus erythematosus.


Assuntos
Autoantígenos/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Ilhas de CpG/imunologia , Interferon-alfa/fisiologia , Animais , Células Clonais , Ilhas de CpG/genética , DNA Bacteriano/imunologia , DNA Bacteriano/metabolismo , Relação Dose-Resposta Imunológica , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/metabolismo
19.
J Endotoxin Res ; 12(6): 379-84, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17254393

RESUMO

AM14 B cells are a prototype for those low affinity autoreactive B cells that routinely mature as naïve cells in peripheral lymphoid tissues. These cells express a transgene-encoded receptor specific for IgG2a and can be effectively activated by immune complexes that incorporate either mammalian DNA or mammalian RNA that has been released from dead or dying cells. Activation depends on the ability of the B-cell receptor to deliver antigen to an internal vesicular compartment containing either Toll-like receptor-9 (TLR9) or TLR7. Since TLR9 and TLR7 are thought to recognize microbial DNA and RNA preferentially, it is important to determine under what conditions mammalian DNA and RNA become effective TLR ligands, and whether the determining factor is delivery or structure. This issue has been addressed by using IgG2a mAbs to deliver immune complexes preloaded with defined fragments of DNA or RNA, or by using modified ODNs/ORNs. The data demonstrate that only certain nucleic acid sequences or structures can induce autoreactive B-cell proliferation, even when delivery to the appropriate TLR compartment is facilitated by uptake through the B-cell receptor (BCR).


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , DNA/imunologia , RNA/imunologia , Adjuvantes Imunológicos , Animais , Sequência de Bases , Células da Medula Óssea/fisiologia , Primers do DNA , Imunoglobulina M , Cinética , Ativação Linfocitária , Macrófagos/imunologia , Mamíferos , Camundongos , Camundongos Knockout , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA