Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38574279

RESUMO

Immune activation is essential for lung control of viral and bacterial infection, but an overwhelming inflammatory response often leads to the onset of acute respiratory distress syndrome (ARDS). Interleukin-10 (IL-10) plays a crucial role in regulating the balance between antimicrobial immunity and immunopathology. In the current study, we have investigated the role of IL-10 in acute lung injury (ALI) induced by influenza A virus (IAV) and methicillin-resistant Staphylococcus aureus (MRSA) coinfection. This unique coinfection model resembles acute pneumonia patients undergoing appropriate antibiotic therapies. Using global IL-10 and IL-10 receptor (IL-10R) gene-deficient mice, as well as in vivo neutralizing antibodies, here we show that IL-10 deficiency promotes IFN-γ-dominant cytokine responses and triggers acute animal death. Interestingly, this extreme susceptibility is fully preventable by IFN-γ neutralization during coinfection. Further studies using mice with Il10ra deletion in selective myeloid subsets reveal that IL-10 primarily acts on mononuclear phagocytes to prevent IFN-γ/TNF-α hyper-production and acute mortality. Importantly, this anti-inflammatory IL-10 signaling is independent of its inhibitory effect on antiviral and antibacterial defense. Collectively, our results demonstrate a key mechanism of IL-10 in preventing hypercytokinemia and ARDS pathogenesis by counteracting the IFN-γ response.

2.
Front Immunol ; 14: 1242183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881429

RESUMO

Clostridium butyricum is known as a probiotic butyric acid bacterium that can improve the intestinal environment. In this study, we isolated a new strain of C. butyricum from infant feces and evaluated its physiological characteristics and antiviral efficacy by modulating the innate immune responses in vitro and in vivo. The isolated C. butyricum S-45-5 showed typical characteristics of C. butyricum including bile acid resistance, antibacterial ability, and growth promotion of various lactic acid bacteria. As an antiviral effect, C. butyricum S-45-5 markedly reduced the replication of influenza A virus (PR8), Newcastle Disease Virus (NDV), and Herpes Simplex Virus (HSV) in RAW264.7 cells in vitro. This suppression can be explained by the induction of antiviral state in cells by the induction of antiviral, IFN-related genes and secretion of IFNs and pro-inflammatory cytokines. In vivo, oral administration of C. butyricum S-45-5 exhibited prophylactic effects on BALB/c mice against fatal doses of highly pathogenic mouse-adapted influenza A subtypes (H1N1, H3N2, and H9N2). Before challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed increased levels of IFN-ß, IFN-γ, IL-6, and IL-12 in serum, the small intestine, and bronchoalveolar lavage fluid (BALF), which correlated with observed prophylactic effects. Interestingly, after challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed reduced levels of pro-inflammatory cytokines and relatively higher levels of anti-inflammatory cytokines at day 7 post-infection. Taken together, these findings suggest that C. butyricum S-45-5 plays an antiviral role in vitro and in vivo by inducing an antiviral state and affects immune modulation to alleviate local and systemic inflammatory responses caused by influenza virus infection. Our study provides the beneficial effects of the new C. butyricum S-45-5 with antiviral effects as a probiotic.


Assuntos
Clostridium butyricum , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Humanos , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Vírus da Influenza A Subtipo H3N2 , Citocinas/farmacologia
3.
Front Immunol ; 14: 1272920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771584

RESUMO

Introduction: A frequent sequela of influenza A virus (IAV) infection is secondary bacterial pneumonia. Therefore, it is clinically important to understand the genetic predisposition to IAV and bacterial coinfection. Methods: BALB/c and C57BL/6 (B6) mice were infected with high or low-pathogenic IAV and Streptococcus pneumoniae (SPn). The contribution of cellular and molecular immune factors to the resistance/susceptibility of BALB/c and B6 mice were dissected in nonlethal and lethal IAV/SPn coinfection models. Results: Low-virulent IAV X31 (H3N2) rendered B6 mice extremely susceptible to SPn superinfection, while BALB/c mice remained unaffected. X31 infection alone barely induces IFN-γresponse in two strains of mice; however, SPn superinfection significantly enhances IFN-γ production in the susceptible B6 mice. As a result, IFN-γ signaling inhibits neutrophil recruitment and bacterial clearance, leading to lethal X31/SPn coinfection in B6 mice. Conversely, the diminished IFN-γ and competent neutrophil responses enable BALB/c mice highly resistant to X31/SPn coinfection. Discussion: The results establish that type 1 immune predisposition plays a key role in lethal susceptibility of B6 mice to pneumococcal pneumonia after mild IAV infection.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia Pneumocócica , Superinfecção , Animais , Camundongos , Humanos , Vírus da Influenza A Subtipo H3N2 , Camundongos Endogâmicos C57BL , Streptococcus pneumoniae
4.
Front Immunol ; 13: 1020262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248821

RESUMO

Foot-and-mouth disease virus (FMDV) is a single-stranded, positive-sense RNA virus containing at least 13 proteins. Many of these proteins show immune modulation capabilities. As a non-structural protein of the FMDV, 2B is involved in the rearrangement of the host cell membranes and the disruption of the host secretory pathway as a viroporin. Previous studies have also shown that FMDV 2B plays a role in the modulation of host type-I interferon (IFN) responses through the inhibition of expression of RIG-I and MDA5, key cytosolic sensors of the type-I IFN signaling. However, the exact molecular mechanism is poorly understood. Here, we demonstrated that FMDV 2B modulates host IFN signal pathway by the degradation of RIG-I and MDA5. FMDV 2B targeted the RIG-I for ubiquitination and proteasomal degradation by recruiting E3 ubiquitin ligase ring finger protein 125 (RNF125) and also targeted MDA5 for apoptosis-induced caspase-3- and caspase-8-dependent degradation. Ultimately, FMDV 2B significantly inhibited RNA virus-induced IFN-ß production. Importantly, we identified that the C-terminal amino acids 126-154 of FMDV 2B are essential for 2B-mediated degradation of the RIG-I and MDA5. Collectively, these results provide a clearer understanding of the specific molecular mechanisms used by FMDV 2B to inhibit the IFN responses and a rational approach to virus attenuation for future vaccine development.


Assuntos
Vírus da Febre Aftosa , Interferon Tipo I , Aminoácidos/metabolismo , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Viroporinas
5.
Front Immunol ; 13: 1011132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203588

RESUMO

Acute Respiratory Distress Syndrome (ARDS) is an inflammatory disease that is associated with high mortality but no specific treatment. Our understanding of initial events that trigger ARDS pathogenesis is limited. We have developed a mouse model of inflammatory lung injury by influenza and methicillin-resistant Staphylococcus aureus (MRSA) coinfection plus daily antibiotic therapy. Using this pneumonic ARDS model, here we show that IFN-γ receptor signaling drives inflammatory cytokine storm and lung tissue damage. By single-cell RNA sequencing (scRNA-seq) analysis, we demonstrate that IFN-γ signaling induces a transcriptional shift in airway immune cells, particularly by upregulating macrophage and monocyte expression of genes associated with inflammatory diseases. Further evidence from conditional knockout mouse models reveals that IFN-γ receptor signaling in myeloid cells, particularly CD11c+ mononuclear phagocytes, directly promotes TNF-α hyperproduction and inflammatory lung damage. Collectively, the findings from this study, ranging from cell-intrinsic gene expression to overall disease outcome, demonstrate that influenza-induced IFN-γ triggers myeloid cell hyperresponsiveness to MRSA, thereby leading to excessive inflammatory response and lethal lung damage during coinfection.


Assuntos
Coinfecção , Influenza Humana , Lesão Pulmonar , Staphylococcus aureus Resistente à Meticilina , Síndrome do Desconforto Respiratório , Animais , Antibacterianos/farmacologia , Humanos , Interferon gama/genética , Lesão Pulmonar/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides , Transcriptoma , Fator de Necrose Tumoral alfa/genética
6.
Immunohorizons ; 6(10): 716-721, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220188

RESUMO

Multiple organ damage is common in patients with severe COVID-19, even though the underlying pathogenic mechanisms remain unclear. Acute viral infection typically activates type I IFN (IFN-I) signaling. The antiviral role of IFN-I is well characterized in vitro. However, our understanding of how IFN-I regulates host immune response to SARS-CoV-2 infection in vivo is incomplete. Using a human ACE2-transgenic mouse model, we show in the present study that IFN-I receptor signaling is essential for protection against the acute lethality of SARS-CoV-2 in mice. Interestingly, although IFN-I signaling limits viral replication in the lung, the primary infection site, it is dispensable for efficient viral clearance at the adaptive phase of SARS-CoV-2 infection. Conversely, we found that in the absence of IFN-I receptor signaling, the extreme animal lethality is consistent with heightened infectious virus and prominent pathological manifestations in the brain. Taken together, our results in this study demonstrate that IFN-I receptor signaling is required for restricting virus neuroinvasion, thereby mitigating COVID-19 severity.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais , Humanos , Camundongos , Camundongos Transgênicos
7.
Transbound Emerg Dis ; 69(6): 3548-3561, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36183192

RESUMO

Lumpy skin disease (LSD) is a fulminant infectious disease that mostly affects cattle and causes considerable economic loss throughout the globe. This study was conducted to develop a new multi-epitope-based vaccine against LSD that can elicit immunological responses using an in silico reverse vaccinology approach. Initially, three antigenic proteins, protein E5, E3 ubiquitin-protein ligase LAP and 62 kDa protein, were manipulated to recognize potential T-cell and B-cell epitopes. To identify superior epitopes, a variety of bioinformatic techniques including antigenicity testing, transmembrane topology screening, allergenicity assessment, conservancy analysis, and toxicity evaluation were used. Finally, three new subunit vaccines (construct V1, V2 and V3) were developed employing the most effective epitopes, suitable adjuvants, pan HLA DR-binding epitope (PADRE) and linkers. Then, based on the antigenicity, solubility, and validation score of the 3D structures, construct V2 was chosen as one of the best candidate vaccines. The results of the molecular dynamic simulation and disulphide engineering indicated that the vaccine (construct V2) was stable. Additionally, the immunological simulation findings supported the vaccine candidate's ability to trigger humoral and cellular immune responses. Further validation of the proposed vaccine candidate may necessitate additional in vitro and in vivo investigations.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Animais , Bovinos , Epitopos de Linfócito T , Doença Nodular Cutânea/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito B , Vacinas de Subunidades Antigênicas , Biologia Computacional/métodos
8.
J Immunol ; 209(1): 128-135, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35705254

RESUMO

Postinfluenza bacterial pneumonia is a significant cause of hospitalization and death in humans. The mechanisms underlying this viral and bacterial synergy remain incompletely understood. Recent evidence indicates that influenza-induced IFNs, particularly type I IFN (IFN-I) and IFN-γ, suppress antibacterial defenses. In this study, we have investigated the relative importance and interplay of IFN-I and IFN-γ pathways in influenza-induced susceptibility to Streptococcus pneumoniae infection. Using gene-deficient mouse models, as well as in vivo blocking Abs, we show that both IFN-I and IFN-γ signaling pathways contribute to the initial suppression of antibacterial immunity; however, IFN-γ plays a dominant role in the disease deterioration, in association with increased TNF-α production and alveolar macrophage (AM) depletion. We have previously shown that IFN-γ impairs AM antibacterial function and thereby acute bacterial clearance. The findings in this study indicate that IFN-γ signaling also impairs AM viability and αß T cell recruitment during the progression of influenza/S. pneumoniae coinfection. Macrophages insensitive to IFN-γ mice express a dominant-negative mutant IFN-γR in mononuclear phagocytes. Interestingly, macrophages insensitive to IFN-γ mice exhibited significantly improved recovery and survival from coinfection, despite delayed bacterial clearance. Importantly, we demonstrate that IFN-I receptor signaling is essential for preventing IFN-γ hyperproduction and animal death during the progression of postinfluenza pneumococcal pneumonia.


Assuntos
Coinfecção , Influenza Humana , Interferon Tipo I/metabolismo , Infecções por Orthomyxoviridae , Infecções Pneumocócicas , Pneumonia Pneumocócica , Animais , Antibacterianos , Humanos , Interferon gama , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Antibiotics (Basel) ; 11(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35052957

RESUMO

Current evidence indicates that more than half of all antimicrobials are used in the animal food-producing sector, which is considered a significant risk factor for the development, spread, and existence of antimicrobial resistance (AMR) pathogens in animals, humans, and the environment. Among other factors, clinical etiology and the level of knowledge, attitudes, and practices (KAP) of veterinarians are thought to be responsible for inappropriate prescriptions in the animal-source protein production sector in lower-resource settings like Bangladesh. We performed this cross-sectional study to assess factors associated with veterinarians' antimicrobial prescription behavior and their KAP on antimicrobial use (AMU) and AMR in Bangladesh. Exploratory and multivariate logistic models were used to describe an association between knowledge, attitudes, and practices of AMU and AMR and demographic characteristics of veterinarians. The results demonstrated that when selecting an antimicrobial, there was no to minimal influence of culture and susceptibility tests and patients' AMU history but moderate to high influence of the farmer's economic condition and drug instructions among the veterinarians. The results also demonstrated that more than half of the veterinarians had correct KAP regarding AMU and AMR, while the rest had moderate or lower levels of KAP. The factor score analysis revealed that age, level of education, years of experience, gender, and previous training on AMU and AMR were the key influencing factors in their level of KAP. Adjusted logistic regression analysis showed that respondents' age, current workplace, and previous training on AMU and AMR had a positive association with increased KAP. Considering the results, it is imperative to include AMR issues on vet curricula, and to provide post-education training, awareness campaigns, easy access to, and dissemination of AMR resources. Increasing the veterinary services to the outreach areas of the country and motivating veterinarians to follow the national AMR guidelines could be some other potential solutions to tackle the over-prescriptions of antimicrobials.

10.
Antibiotics (Basel) ; 11(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35052973

RESUMO

Zoonotic and antimicrobial-resistant Escherichia coli (hereafter, E. coli) is a global public health threat which can lead to detrimental effects on human health. Here, we aim to investigate the antimicrobial resistance and the presence of mcr-1 gene in E. coli isolated from chicken feces. Ninety-four E. coli isolates were obtained from samples collected from different locations in Bangladesh, and the isolates were identified using conventional microbiological tests. Phenotypic disk diffusion tests using 20 antimicrobial agents were performed according to CLSI-EUCAST guidelines, and minimum inhibitory concentrations (MICs) were determined for a subset of samples. E. coli isolates showed high resistance to colistin (88.30%), ciprofloxacin (77.66%), trimethoprim/sulfamethoxazole (76.60%), tigecycline (75.53%), and enrofloxacin (71.28%). Additionally, the pathotype eaeA gene was confirmed in ten randomly selected E. coli isolates using primer-specific polymerase chain reaction (PCR). The presence of mcr-1 gene was confirmed using PCR and sequencing analysis in six out of ten E. coli isolates. Furthermore, sequencing and phylogenetic analyses revealed a similarity between the catalytic domain of Neisseria meningitidis lipooligosaccharide phosphoethanolamine transferase A (LptA) and MCR proteins, indicating that the six tested isolates were colistin resistant. Finally, the findings of the present study showed that E. coli isolated from chicken harbored mcr-1 gene, and multidrug and colistin resistance. These findings accentuate the need to implement strict measures to limit the imprudent use of antibiotics, particularly colistin, in agriculture and poultry farms.

11.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062354

RESUMO

The susceptibility to respiratory syncytial virus (RSV) infection in early life has been associated with a deficient T-helper cell type 1 (Th1) response. Conversely, healthy adults generally do not exhibit severe illness from RSV infection. In the current study, we investigated whether Th1 cytokine IFN-γ is essential for protection against RSV and RSV-associated comorbidities in adult mice. We found that, distinct from influenza virus, prior RSV infection does not induce significant IFN-γ production and susceptibility to secondary Streptococcus pneumoniae infection in adult wild-type (WT) mice. In ovalbumin (OVA)-induced asthmatic mice, RSV super-infection increases airway neutrophil recruitment and inflammatory lung damage but has no significant effect on OVA-induced eosinophilia. Compared with WT controls, RSV infection of asthmatic Ifng-/- mice results in increased airway eosinophil accumulation. However, a comparable increase in eosinophilia was detected in house dust mite (HDM)-induced asthmatic Ifng-/- mice in the absence of RSV infection. Furthermore, neither WT nor Ifng-/- mice exhibit apparent eosinophil infiltration during RSV infection alone. Together, these findings indicate that, despite its critical role in limiting eosinophilic inflammation during asthma, IFN-γ is not essential for protection against RSV-induced exacerbation of asthmatic inflammation in adult mice.


Assuntos
Asma/patologia , Inflamação/imunologia , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/patologia , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Asma/induzido quimicamente , Asma/imunologia , Líquido da Lavagem Broncoalveolar , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/prevenção & controle , Comorbidade , Feminino , Inflamação/prevenção & controle , Interferon gama/genética , Pulmão/microbiologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Células Th1 , Células Th2
12.
Infect Genet Evol ; 97: 105128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752930

RESUMO

The scientific community has been releasing whole genomic sequences of SARS-CoV-2 to facilitate the investigation of molecular features and evolutionary history. We retrieved 36 genomes of 18 prevalent countries of Asia, Europe and America for genomic diversity and mutational analysis. Besides, we studied mutations in the RBD regions of Spike (S) proteins to analyze the drug efficiency against these mutations. In this research, phylogenenetic analysis, evolutionary modeling, substitution pattern analysis, molecular docking, dynamics simulation, etc. were performed. The genomic sequences showed >99% similarity with the reference sequence of China.TN93 + G was predicted as a best nucleotide substitution model. It was revealed that effective transition from the co-existing SARS genome to the SARS-CoV-2 and a noticeable positive selection in the SARS-CoV-2 genomes occurred. Moreover, three mutations in RBD domain, Val/ Phe367, Val/ Leu 382 and Ala/ Val522, were discovered in the genomes from Netherland, Bangladesh and the USA, respectively. Molecular docking and dynamics study showed RBD with mutation Val/Leu382 had the lowest binding affinity with remdesivir. In conclusion, the SARS-CoV-2 genomes are similar, but multiple degrees of transitions and transversions occurred. The mutations cause a significant conformational change, which are needed to be investigated during drug and vaccine development.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/química , COVID-19/epidemiologia , Genoma Viral , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Substituição de Aminoácidos , Antivirais/farmacologia , Bangladesh/epidemiologia , Sítios de Ligação , COVID-19/virologia , China/epidemiologia , Evolução Molecular , Expressão Gênica , Humanos , Funções Verossimilhança , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Países Baixos/epidemiologia , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Estados Unidos/epidemiologia , Tratamento Farmacológico da COVID-19
13.
Bioinform Biol Insights ; 15: 11779322211046729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34898982

RESUMO

Neospora caninum is a protozoan parasite, the etiologic agent of Neosporosis-a common cause of abortion in cattle worldwide. Herd level prevalence of Neosporosis could be as high as 90%. However, there is no approved treatment and vaccines available for Neosporosis. MicroRNA (miRNA) based prophylaxis and therapeutics could be options for Neosporosis in cattle and other animals. The current study aimed to investigate the genome of Neospora caninum to identify and characterize the conserved miRNAs through Expressed Sequence Tags (ESTs) dependent homology search. A total of 1,041 mature miRNAs of reference organisms were employed against 336 non-redundant ESTs available in the genome of Neospora caninum. The study predicted one putative miRNA "nca-miR-9388-5p" of 19 nucleotides with MFEI value -1.51 kcal/mol and (A + U) content% 72.94% corresponding with its pre-miRNA. A comprehensive search for specific gene targets was performed and discovered 16 potential genes associated with different protozoal physiological functions. Significantly, the gene "Protein phosphatase" was found responsible for the virulence of Neospora caninum. The other genes were accounted for gene expression, vesicular transport, cell signaling, cell proliferation, DNA repair mechanism, and different developmental stages of the protozoon. Therefore, this study finding will provide pivotal information to future aspirants upon Bovine Neosporosis. It will also serve as the baseline information for further studies of the bioinformatics approach to identify other protozoal miRNAs.

14.
Vet Anim Sci ; 14: 100224, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938907

RESUMO

Since its emergence, Canine Parvovirus type 2 (CPV-2) has been considered as a deadly pathogen in dogs with high mortality in puppies for its clinical gastroenteritis and severe haemorrhagic diarrhoea. Although several studies on CPV-2 were conducted in Bangladesh, molecular investigation is poorly understood. The aim of the study was molecular detection and phylogenetic analysis of CPV in diarrhoeic pet dogs. During Jan-July 2019, anal swabs were collected from 96 unvaccinated pet dogs with suspected CPV infection from Sylhet region of Bangladesh. The CPV infection was initially screened through rapid Immunochromatographic (IC) strip test, and then CPV-2 (VP2 gene) were detected by conventional PCR assay. Then the nucleotide sequence of amplified VP2 gene was compared with other CPV strains from GeneBank. Of the total samples, 17.7% (17/96) found positive in IC strip test, and 15.62% (15/96) were found positive in PCR assay by using primer pair P2 that detect original CPV-2 type. The IC test showed 100% sensitivity and 97.5% specificity with PCR. In sequence analysis, our isolates showed the highest 90.40% homology with the isolates of China and the USA. Our strains had also an evolutionary relationship with the other strains of CPV from China and India. This study demonstrates the presence of CPV-2 in Bangladesh and futher sequence analysis of more VP2 gene will help in details insight of the molecular and genetic evolution of CPV in Bangladesh.

15.
Bioinform Biol Insights ; 15: 11779322211027665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262265

RESUMO

Cryptosporidium parvum, a predominant causal agent of a fatal zoonotic protozoan diarrhoeal disease called cryptosporidiosis, bears a worldwide public health concern for childhood mortality and poses a key threat to the dairy and water industries. MicroRNAs (miRNAs), small but powerful posttranscriptional gene silencing RNA molecules, regulate a variety of molecular, biological, and cellular processes in animals and plants. As to the present date, there is a paucity of information regarding miRNAs of C. parvum; hence, this study was used to identify miRNAs in the organism using a comprehensible expressed sequence tag-based homology search approach consisting of a series of computational screening process from the identification of putative miRNA candidates to the functional annotation of the important gene targets in C. parvum. The results revealed a conserved miRNA that targeted 487 genes in the model organism (Drosophila melanogaster) and 85 genes in C. parvum, of which 11 genes had direct involvements in several crucial virulence factors such as environmental oocyst protection, excystation, locomotion, adhesion, invasion, stress protection, intracellular growth, and survival. Besides, 20 genes showed their association with various major pathways dedicated for the ribosomal biosynthesis, DNA repair, transportation, protein production, gene expression, cell cycle, cell proliferation, development, immune response, differentiation, and nutrient metabolism of the organism in the host. Thus, this study provides a strong evidence of great impact of identified miRNA on the biology, virulence, and pathogenesis of C. parvum. Furthermore, the study suggests that the detected miRNA could be a potential epigenomic tool for controlling the protozoon through silencing those virulent and pathway-related target genes.

16.
Antibiotics (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203195

RESUMO

Antimicrobial resistance (AMR) has become an emerging health issue globally, posing a threat to zoonotic pathogens and foodborne diseases. In Bangladesh, the poultry sector supplies the majority of the demand for animal-source protein. The irrational and excessive use of antimicrobials (AMU) has been observed in the poultry sector. The development of AMR is associated with many factors, including the knowledge and attitudes of poultry farmers. Therefore, AMR reduction requires intervention from all the stockholders, including the farmers who are considered as end users of antimicrobials. This current research conducted a cross-sectional study to assess the knowledge, attitudes, and practices (KAP) of poultry farmers on AMU and AMR in Bangladesh. We determined the KAP of poultry farmers (broiler and layer farmers) of some selected districts of the country using a tested and paper-based questionnaire. The results demonstrated that most of the respondents have insufficient KAP regarding AMU and AMR. The respondents used a variety of antimicrobials primarily in the treatment of various diseases in poultry. One-third of the farmers did not seek antimicrobials from registered vets. Instead, they depended on others or themselves. The factor score analysis further revealed that the farmers' demographic and socioeconomic variables were significant factors influencing the KAP. An adjusted logistic regression analysis showed that older farmers with 9-12 years of farming experience and graduate-level education, engaging in medium-sized layer farming, were more likely to have correct KAP on AMU and AMR. Further, farmers from the Cox's Bazar region showed correct knowledge, whereas farmers of the Chattogram region showed a correct attitude towards AMU and AMR. A Spearman's rank-order correlation revealed a positive association between knowledge-attitudes and knowledge-practices. The findings of the current investigation provide baseline evidence about the KAP of poultry farmers from low-income resources and offer insights into designing interventions and policies for the use of AMU and AMR in Bangladesh.

17.
Arch Virol ; 166(8): 2273-2278, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34059971

RESUMO

Feline panleukopenia virus (FPV) is a highly contagious infectious pathogen of cats globally. However, there is no information on the molecular identification and characterization of FPV in Bangladesh. Here, 8.16% (8/98) and 18.37% (18/98) of diarrheic cats tested positive for FPV by an immunochromatography (IC) test and PCR, respectively. The IC test showed 44.44% sensitivity and 100% specificity in comparison with PCR. Our newly sequenced Bangladeshi FPV strain (MN826076) showed the highest (99.71%) sequence identity to strains from the United Arab Emirates (UAE). Strain MN826076 contained two characteristic amino acid variations in VP2 identifying it as an FPV strain: valine at position 103 and aspartic acid at position 323. Phylogenetically, the VP2 of strain MN826076 was found to be closely related to 19 FPV strains, sharing the same clade.


Assuntos
Diarreia/veterinária , Diarreia/virologia , Vírus da Panleucopenia Felina/classificação , Panleucopenia Felina/diagnóstico , Substituição de Aminoácidos , Animais , Bangladesh , Proteínas do Capsídeo/genética , Gatos , China , Cromatografia de Afinidade , Vírus da Panleucopenia Felina/genética , Vírus da Panleucopenia Felina/isolamento & purificação , Filogenia , Filogeografia , Portugal , Sensibilidade e Especificidade , Tailândia , Emirados Árabes Unidos
18.
Biomed Pharmacother ; 140: 111742, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052565

RESUMO

Here, drug repurposing and molecular docking were employed to screen approved MPP inhibitors and their derivatives to suggest a specific therapeutic agent for the treatment of COVID-19. The approved MPP inhibitors against HIV and HCV were prioritized, while RNA dependent RNA Polymerase (RdRp) inhibitor remdesivir including Favipiravir, alpha-ketoamide were studied as control groups. The target drug surface hotspot was also investigated through the molecular docking technique. Molecular dynamics was performed to determine the binding stability of docked complexes. Absorption, distribution, metabolism, and excretion analysis was conducted to understand the pharmacokinetics and drug-likeness of the screened MPP inhibitors. The results of the study revealed that Paritaprevir (-10.9 kcal/mol) and its analog (CID 131982844) (-16.3 kcal/mol) showed better binding affinity than the approved MPP inhibitors compared in this study, including remdesivir, Favipiravir, and alpha-ketoamide. A comparative study among the screened putative MPP inhibitors revealed that the amino acids T25, T26, H41, M49, L141, N142, G143, C145, H164, M165, E166, D187, R188, and Q189 are at potentially critical positions for being surface hotspots in the MPP of SARS-CoV-2. The top 5 predicted drugs (Paritaprevir, Glecaprevir, Nelfinavir, and Lopinavir) and the topmost analog showed conformational stability in the active site of the SARS-CoV-2 MP protein. The study also suggested that Paritaprevir and its analog (CID 131982844) might be effective against SARS-CoV-2. The current findings are limited to in silico analysis and lack in vivo efficacy testing; thus, we strongly recommend a quick assessment of Paritaprevir and its analog (CID 131982844) in a clinical trial.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/uso terapêutico , Reposicionamento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular
19.
Protist ; 172(2): 125804, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33964594

RESUMO

The study was carried out to determine the prevalence and associated risk factors of theileriosis in goats of Chattogram district, Bangladesh. Molecular characterization of circulating Theileria in this area was also undertaken. A total of 400 samples were collected from goats of different breeds, ages and sex with relevant information of rearing and management. The prevalence of theileriosis was 8.50% (34/400) by polymerase chain reaction though all of those samples were test-negative by microscopic examination. Among different risk factors season, breed and tick infestation were found to be significantly (p ≤ 0.05) associated with the prevalence of theileriosis in goats. Serous nasal discharge and swollen lymph nodes were determined to be significant clinical signs. The Theileria spp. detected in the present study closely resemble isolates which were previously detected in Myanmar and China. Further large scale epidemiological studies are required to identify the circulating species and responsible vectors, which would facilitate control measures for this disease in Bangladesh.


Assuntos
Doenças das Cabras/parasitologia , Epidemiologia Molecular , Theileria/genética , Theileriose/parasitologia , Animais , Bangladesh/epidemiologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/prevenção & controle , Cabras , Prevalência , Theileriose/epidemiologia , Theileriose/prevenção & controle
20.
Animals (Basel) ; 11(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467777

RESUMO

Colistin (polymyxin E) is widely used in animal and human medicine and is increasingly used as one of the last-resort antibiotics against Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant Gram-negative bacteria, resistance to this antibiotic ought to be monitored. The study was undertaken to elucidate the molecular mechanisms, genetic relationships and phenotype correlations of colistin-resistant isolates. Here, we report the detection of the mcr-1 gene in chicken-associated Salmonella isolates in Bangladesh and its in-silico functional analysis. Out of 100 samples, 82 Salmonella spp. were isolated from chicken specimens (liver, intestine). Phenotypic disc diffusion and minimum inhibitory concentration (MIC) assay using different antimicrobial agents were performed. Salmonella isolates were characterized using PCR methods targeting genus-specific invA and mcr-1 genes with validation for the functional analysis. The majority of the tested Salmonella isolates were found resistant to colistin (92.68%), ciprofloxacin (73.17%), tigecycline (62.20%) and trimethoprim/sulfamethoxazole (60.98%). When screened using PCR, five out of ten Salmonella isolates were found to carry the mcr-1 gene. One isolate was confirmed for Salmonella enterica subsp. enterica serovar Enteritidis, and other four isolates were confirmed for Salmonella enterica subsp. enterica serovar Typhimurium. Sequencing and phylogenetic analysis revealed a divergent evolutionary relationship between the catalytic domain of Neisseria meningitidis lipooligosaccharide phosphoethanolamine transferase A (LptA) and MCR proteins, rendering them resistant to colistin. Three-dimensional homology structural analysis of MCR-1 proteins and molecular docking interactions suggested that MCR-1 and LptA share a similar substrate binding cavity, which could be validated for the functional analysis. The comprehensive molecular and in-silico analyses of the colistin resistance mcr-1 gene of Salmonella spp. of chicken origin in the present study highlight the importance of continued monitoring and surveillance for antimicrobial resistance among pathogens in food chain animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA