Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Res Commun ; 2(11): 1334-1343, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36506732

RESUMO

Oxaliplatin-induced peripheral neurotoxicity (OIPN) is a debilitating side effect that afflicts ~90% of patients that is initiated by OCT2-dependent uptake of oxaliplatin in DRG neurons. The antidepressant drug duloxetine has been used to treat OIPN, although its usefulness in preventing this side effect remains unclear. We hypothesized that duloxetine has OCT2-inhibitory properties and can be used as an adjunct to oxaliplatin-based regimens to prevent OIPN. Transport studies were performed in cells stably transfected with mouse or human OCT2 and in isolated mouse DRG neurons ex vivo. Wild-type and OCT2-deficient mice were used to assess effects of duloxetine on hallmarks of OIPN, endogenous OCT2 biomarkers, and the pharmacokinetics of oxaliplatin, and the translational feasibility of a duloxetine-oxaliplatin combination was evaluated in various models of colorectal cancer. We found that duloxetine potently inhibited the OCT2-mediated transport of several xenobiotic substrates, including oxaliplatin, in a reversible, concentration-dependent manner, and independent of species and cell context. Furthermore, duloxetine restricted access of these substrates to DRG neurons ex vivo and prevented OIPN in wild-type mice to a degree similar to the complete protection observed in OCT2-deficient mice, without affecting the plasma levels of oxaliplatin. Importantly, the uptake and cytotoxicity of oxaliplatin in tumor cell lines in vitro and in vivo were not negatively influenced by duloxetine. The observed OCT2-targeting properties of duloxetine, combined with the potential for clinical translation, provide support for its further exploration as a therapeutic candidate for studies aimed at preventing OIPN in cancer patients requiring treatment with oxaliplatin. Significance: We found that duloxetine has potent OCT2-inhibitory properties and can diminish excessive accumulation of oxaliplatin into DRG neurons. In addition, pre-treatment of mice with duloxetine prevented OIPN without significantly altering the plasma pharmacokinetics and antitumor properties of oxaliplatin. These results suggest that intentional inhibition of OCT2-mediated transport by duloxetine can be employed as a prevention strategy to ameliorate OIPN without compromising the effectiveness of oxaliplatin-based treatment.


Assuntos
Antineoplásicos , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Humanos , Camundongos , Animais , Oxaliplatina/efeitos adversos , Antineoplásicos/toxicidade , Cloridrato de Duloxetina/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Síndromes Neurotóxicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA