Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Virol ; 88(12): 6690-701, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696472

RESUMO

UNLABELLED: In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation. IMPORTANCE: The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.


Assuntos
Vacinas contra a AIDS/imunologia , Sistema Nervoso Central/virologia , Vetores Genéticos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Macaca fascicularis , Vírus da Estomatite Vesicular Indiana/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Anticorpos Antivirais/imunologia , Sistema Nervoso Central/imunologia , Modelos Animais de Doenças , Vetores Genéticos/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , Humanos , Macaca fascicularis/genética , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Masculino , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
2.
J Virol Methods ; 164(1-2): 43-50, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19941901

RESUMO

Propagation-defective vesicular stomatitis virus (VSV) vectors that encode a truncated G protein (VSV-Gstem) or lack the G gene entirely (VSV-DeltaG) are attractive vaccine vectors because they are immunogenic, cannot replicate and spread after vaccination, and do not express many of the epitopes that elicit neutralizing anti-VSV immunity. To consider advancing non-propagating VSV vectors towards clinical assessment, scalable technology that is compliant with human vaccine manufacturing must be developed to produce clinical trial material. Accordingly, two propagation methods were developed for VSV-Gstem and VSV-DeltaG vectors encoding HIV gag that have the potential to support large-scale production. One method is based on transient expression of G protein after electroporating plasmid DNA into Vero cells and the second is based on a stable Vero cell line that contains a G gene controlled by a heat shock-inducible transcription unit. Both methods reproducibly supported production of 1 x 10(7) to 1 x 10(8) infectious units (I.U.s) of vaccine vector per milliliter. Results from these studies also showed that optimization of the G gene is necessary for abundant G protein expression from electroporated plasmid DNA or from DNA integrated in the genome of a stable cell line, and that the titers of VSV-Gstem vectors generally exceeded VSV-DeltaG.


Assuntos
Vetores Genéticos , Glicoproteínas de Membrana/deficiência , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/genética , Proteínas do Envelope Viral/deficiência , Animais , Chlorocebus aethiops , Glicoproteínas de Membrana/biossíntese , Dados de Sequência Molecular , RNA Viral/genética , Análise de Sequência de DNA , Células Vero , Proteínas do Envelope Viral/biossíntese , Cultura de Vírus/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
3.
Vaccine ; 27(22): 2930-9, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19428903

RESUMO

Recombinant vesicular stomatitis viruses (rVSVs) are being developed as potential HIV-1 vaccine candidates. To characterize the in vivo replication and dissemination of rVSV vectors in mice, high doses of a highly attenuated vector expressing HIV-1 Gag, rVSV(IN)-N4CT9-Gag1, and a prototypic reference virus, rVSV(IN)-HIVGag5, were delivered intramuscularly (IM), intranasally (IN), or intravenously (IV). We used quantitative, real-time RT-PCR (Q-PCR) and standard plaque assays to measure the temporal dissemination of these viruses to various tissues. Following IM inoculation, both viruses were detected primarily at the injection site as well as in draining lymph nodes; neither virus induced significant weight loss, pathologic signs, or evidence of neuroinvasion. In contrast, following IN inoculation, the prototypic virus was detected in all tissues tested and caused significant weight loss leading to death. IN administration of rVSV(IN)-N4CT9-Gag1 resulted in detection in numerous tissues (brain, lung, nasal turbinates, and lymph nodes) albeit in significantly reduced levels, which caused little or no weight loss nor any mortality. Following IV inoculation, both prototypic and attenuated viruses were detected by Q-PCR in all tissues tested. In contrast to the prototype, rVSV(IN)-N4CT9-Gag1 viral loads were significantly lower in all organs tested, and no infectious virus was detected in the brain following IV inoculation, despite the presence of viral RNA. These studies demonstrated significant differences in the biodistribution patterns of and the associated pathogenicity engendered by the prototypic and attenuated vectors in a highly susceptible host.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/farmacocinética , Vetores Genéticos , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Vacinas contra a AIDS/efeitos adversos , Administração Intranasal , Animais , Feminino , Injeções Intramusculares , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos BALB C , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/farmacocinética , Ensaio de Placa Viral
4.
J Virol ; 82(1): 207-19, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942549

RESUMO

Recombinant vesicular stomatitis virus (rVSV) has shown great potential as a new viral vector for vaccination. However, the prototypic rVSV vector described previously was found to be insufficiently attenuated for clinical evaluation when assessed for neurovirulence in nonhuman primates. Here, we describe the attenuation, neurovirulence, and immunogenicity of rVSV vectors expressing human immunodeficiency virus type 1 Gag. These rVSV vectors were attenuated by combinations of the following manipulations: N gene translocations (N4), G gene truncations (CT1 or CT9), noncytopathic M gene mutations (Mncp), and positioning of the gag gene into the first position of the viral genome (gag1). The resulting N4CT1-gag1, N4CT9-gag1, and MncpCT1-gag1 vectors demonstrated dramatically reduced neurovirulence in mice following direct intracranial inoculation. Surprisingly, in spite of a very high level of attenuation, the N4CT1-gag1 and N4CT9-gag1 vectors generated robust Gag-specific immune responses following intramuscular immunization that were equivalent to or greater than immune responses generated by the more virulent prototypic vectors. MncpCT1-gag1 also induced Gag-specific immune responses following intramuscular immunization that were equivalent to immune responses generated by the prototypic rVSV vector. Placement of the gag gene in the first position of the VSV genome was associated with increased in vitro expression of Gag protein, in vivo expression of Gag mRNA, and enhanced immunogenicity of the vector. These findings demonstrate that through directed manipulation of the rVSV genome, vectors that have reduced neurovirulence and enhanced immunogenicity can be made.


Assuntos
Vacinas contra a AIDS/imunologia , Vetores Genéticos , HIV-1/genética , Vesiculovirus/genética , Vacinas Virais/imunologia , Vacinas contra a AIDS/genética , Animais , Citocinas/biossíntese , Anticorpos Anti-HIV/sangue , Injeções Intramusculares , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos BALB C , Mutação Puntual , Recombinação Genética , Deleção de Sequência , Linfócitos T Citotóxicos/imunologia , Translocação Genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Virulência , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
5.
Vaccine ; 25(41): 7132-44, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17850933

RESUMO

Respiratory syncytial virus (RSV) is a major cause of acute respiratory tract disease in humans. Towards development of a prophylactic vaccine, we genetically engineered Venezuelan equine encephalitis virus (VEEV) replicons encoding the fusion (Fa) or attachment (Ga or Gb) proteins of the A or B subgroups of RSV. Intramuscular immunization with a formulation composed of equal amounts of each replicon particle (3vRSV replicon vaccine) generated serum neutralizing antibodies against A and B strains of RSV in BALB/c mice and rhesus macaques. When contrasted with purified natural protein or formalin-inactivated RSV formulated with alum, the 3vRSV replicon vaccine induced balanced Th1/Th2 T cell responses in mice. This was evident in the increased number of RSV-specific IFN-gamma(+) splenocytes following F or G peptide stimulation, diminished quantity of eosinophils and type 2 T cell cytokines in the lungs after challenge, and increased in vivo lysis of RSV peptide-loaded target cells. The immune responses in mice were also protective against intranasal challenge with RSV. Thus, the replicon-based platform represents a promising new strategy for vaccines against RSV.


Assuntos
Vírus da Encefalite Equina Venezuelana/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vacinas Sintéticas/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Citocinas/biossíntese , Vírus da Encefalite Equina Venezuelana/genética , Feminino , Injeções Intramusculares , Pulmão/imunologia , Pulmão/virologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sinciciais Respiratórios/genética , Baço/imunologia , Linfócitos T/imunologia , Vacinas Sintéticas/genética , Proteínas Estruturais Virais/genética , Vacinas Virais/genética
6.
Virology ; 367(2): 275-87, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17599381

RESUMO

Widespread use of a live-attenuated influenza vaccine (LAIV) in the United States (licensed as FluMist) raises the possibility that vaccine viruses will contribute gene segments to the type A influenza virus gene pool. Progeny viruses possessing new genotypes might arise from genetic reassortment between circulating wild-type (wt) and vaccine strains, but it will be difficult to predict whether they will be viable or exhibit novel properties. To begin addressing these uncertainties, reverse-genetics was used to generate 34 reassortant viruses derived from wt influenza virus A/Sydney/5/97 and the corresponding live vaccine strain. The reassortants contained different combinations of vaccine and wt PB2, PB1, PA, NP, M, and NS gene segments whereas all strains encoded wt HA and NA glycoproteins. The phenotypes of the reassortant strains were compared to wt and vaccine viruses by evaluating temperature-sensitive (ts) plaque formation and replication attenuation (att) in ferrets following intranasal inoculation. The results demonstrated that the vaccine virus PB1, PB2, and NP gene segments were dominant when introduced into the wt A/Sydney/5/97 genetic background, producing recombinant viruses that expressed the ts and att phenotypes. A dominant attenuated phenotype also was evident when reassortant strains contained the vaccine M or PA gene segments, even though these polypeptides are not temperature-sensitive. Although the vaccine M and NS gene segments typically are not associated with temperature sensitivity, a number of reassortants containing these vaccine gene segments did exhibit a more restricted ts phenotype. Overall, no reassortant strains were more virulent than wt, and in fact, 33 of the 34 recombinant viruses replicated less efficiently in infected ferrets. These results suggest that genetic reassortment between wt and vaccine strains is unlikely to produce viruses having novel properties that differ substantially from either progenitor, and that the likely outcome of reassortment will be attenuated viruses.


Assuntos
Genes Virais , Vírus da Influenza A/genética , Vacinas contra Influenza/biossíntese , Vírus Reordenados/genética , Recombinação Genética , Vacinas Atenuadas/genética , Proteínas Virais/genética , Animais , Furões , Engenharia Genética , Genótipo , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Fenótipo , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/fisiologia , Temperatura , Células Tumorais Cultivadas , Vacinas Atenuadas/química , Vacinas Atenuadas/imunologia , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Ensaio de Placa Viral , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
7.
J Virol Methods ; 143(1): 55-64, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17382412

RESUMO

Assessment of in vivo viral replication of live attenuated recombinant vesicular stomatitis virus (rVSV) vaccine vector candidates encoding HIV gag requires comprehensive preclinical safety studies, and development of sensitive assays to monitor the outcome of vaccination of animals is important. In this study, two 2-step quantitative real-time RT-PCR assays were developed; a singleplex assay to detect VSV genomic RNA from ferrets inoculated intra-cranially (IC) or intra-nasally (IN) with either a wild-type (wt) virus or an attenuated rVSV vector engineered to express HIV gag protein, and a duplex assay to simultaneously detect VSV-N and HIV-gag mRNAs from cynomolgus macaques inoculated intra-thalamically (IT) with the same viruses. Using synthetic oligonucleotides as standards, the lower limit of detection of VSV-N and HIV-gag was 50 copies. Results showed high levels of wt VSV(IN) genomic RNA and mRNA in ferret and macaque tissues, respectively, and significantly lower levels of VSV genomic RNA and VSV-N and HIV-gag mRNAs in tissues from animals inoculated with the attenuated rVSV vector. These assays correlated with both the course of infection for these animals, and the infectious viral load measured by a standard plaque assay, and could be used to determine the safety profile of rVSV vaccine vectors.


Assuntos
Vacinas contra a AIDS , Produtos do Gene gag/isolamento & purificação , HIV/genética , RNA Viral/isolamento & purificação , Vírus da Estomatite Vesicular Indiana/genética , Vacinas contra a AIDS/genética , Animais , Terapia Antirretroviral de Alta Atividade , Furões , Produtos do Gene gag/genética , Vetores Genéticos , Macaca , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Vírus da Estomatite Vesicular Indiana/isolamento & purificação , Carga Viral , Replicação Viral
8.
Vaccine ; 25(12): 2296-305, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17239997

RESUMO

The safety of a propagation-defective Venezuelan equine encephalitis virus (VEEV) replicon particle vaccine was examined in mice. After intracranial inoculation we observed approximately 5% body weight loss, modest inflammatory changes in the brain, genome replication, and foreign gene expression. These changes were transient and significantly less severe than those caused by TC-83, a live-attenuated vaccinal strain of VEEV that has been safely used to immunize military personnel and laboratory workers. Replicon particles injected intramuscularly or intravenously were detected at limited sites 3 days post-administration, and were undetectable by day 22. There was no evidence of dissemination to spinal cord or brain after systemic administration. These results demonstrate that propagation-defective VEEV replicon particles are minimally neurovirulent and lack neuroinvasive potential.


Assuntos
Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/imunologia , Replicon/genética , Proteínas do Envelope Viral/genética , Animais , Peso Corporal , Encéfalo/metabolismo , Encéfalo/virologia , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/prevenção & controle , Injeções Intramusculares , Injeções Intravenosas , Camundongos , RNA Viral/genética , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/metabolismo , Medula Espinal/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Replicação Viral/genética
9.
Virology ; 360(1): 36-49, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17098273

RESUMO

Although vesicular stomatitis virus (VSV) neurovirulence and pathogenicity in rodents have been well studied, little is known about VSV pathogenicity in non-human primates. To address this question, we measured VSV viremia, shedding, and neurovirulence in macaques. Following intranasal inoculation, macaques shed minimal recombinant VSV (rVSV) in nasal washes for 1 day post-inoculation; viremia was not detected. Following intranasal inoculation of macaques, wild type (wt) VSV, rVSV, and two rVSV-HIV vectors showed no evidence of spread to CNS tissues. However, macaques inoculated intrathalamically with wt VSV developed severe neurological disease. One of four macaques receiving rVSV developed clinical and histological signs similar to the wt group, while the remaining three macaques in this group and all of the macaques in the rVSV-HIV vector groups showed no clinical signs of disease and reduced severity of histopathology compared to the wt group. The implications of these findings for rVSV vaccine development are discussed.


Assuntos
Doenças do Sistema Nervoso Central/virologia , Vetores Genéticos , Doenças dos Macacos/virologia , Infecções por Rhabdoviridae/virologia , Vírus da Estomatite Vesicular Indiana , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Doenças do Sistema Nervoso Central/patologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/fisiologia , Inflamação/patologia , Macaca mulatta , Masculino , Doenças dos Macacos/patologia , Mucosa Nasal/virologia , Recombinação Genética , Infecções por Rhabdoviridae/patologia , Medula Espinal/patologia , Vírus da Estomatite Vesicular Indiana/patogenicidade , Vírus da Estomatite Vesicular Indiana/fisiologia , Viremia , Virulência , Replicação Viral
10.
J Virol ; 81(4): 2056-64, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17151112

RESUMO

A variety of rational approaches to attenuate growth and virulence of vesicular stomatitis virus (VSV) have been described previously. These include gene shuffling, truncation of the cytoplasmic tail of the G protein, and generation of noncytopathic M gene mutants. When separately introduced into recombinant VSV (rVSV), these mutations gave rise to viruses distinguished from their "wild-type" progenitor by diminished reproductive capacity in cell culture and/or reduced cytopathology and decreased pathogenicity in vivo. However, histopathology data from an exploratory nonhuman primate neurovirulence study indicated that some of these attenuated viruses could still cause significant levels of neurological injury. In this study, additional attenuated rVSV variants were generated by combination of the above-named three distinct classes of mutation. The resulting combination mutants were characterized by plaque size and growth kinetics in cell culture, and virulence was assessed by determination of the intracranial (IC) 50% lethal dose (LD(50)) in mice. Compared to virus having only one type of attenuating mutation, all of the mutation combinations examined gave rise to virus with smaller plaque phenotypes, delayed growth kinetics, and 10- to 500-fold-lower peak titers in cell culture. A similar pattern of attenuation was also observed following IC inoculation of mice, where differences in LD(50) of many orders of magnitude between viruses containing one and two types of attenuating mutation were sometimes seen. The results show synergistic rather than cumulative increases in attenuation and demonstrate a new approach to the attenuation of VSV and possibly other viruses.


Assuntos
Glicoproteínas de Membrana/genética , Infecções por Rhabdoviridae/virologia , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Feminino , Deleção de Genes , Genes Virais/genética , Camundongos , Proteínas do Nucleocapsídeo/genética , Células Vero , Vírus da Estomatite Vesicular Indiana/crescimento & desenvolvimento , Vírus da Estomatite Vesicular Indiana/patogenicidade , Proteínas da Matriz Viral/genética , Virulência , Replicação Viral
11.
Springer Semin Immunopathol ; 28(3): 239-53, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16977404

RESUMO

Recombinant vesicular stomatitis virus (rVSV) is currently under evaluation as a human immunodeficiency virus (HIV)-1 vaccine vector. The most compelling reasons to develop rVSV as a vaccine vector include a very low seroprevalence in humans, the ability to infect and robustly express foreign antigens in a broad range of cells, and vigorous growth in continuous cell lines used for vaccine manufacture. Numerous preclinical studies with rVSV vectors expressing antigens from a variety of human pathogens have demonstrated the versatility, flexibility, and potential efficacy of the rVSV vaccine platform. When administered to nonhuman primates (NHPs), rVSV vectors expressing HIV-1 Gag and Env elicited robust HIV-1-specific cellular and humoral immune responses, and animals immunized with rVSV vectors expressing simian immunodeficiency virus (SIV) Gag and HIV Env were protected from AIDS after challenge with a pathogenic SIV/HIV recombinant. However, results from an exploratory neurovirulence study in NHPs indicated that these prototypic rVSV vectors might not be adequately attenuated for widespread use in human populations. To address this safety concern, a variety of different attenuation strategies, designed to produce a range of further attenuated rVSV vectors, are currently under investigation. Additional modifications of further attenuated rVSV vectors to upregulate expression of HIV-1 antigens and coexpress molecular adjuvants are also being developed in an effort to balance immunogenicity and attenuation.


Assuntos
Vacinas contra a AIDS , Vetores Genéticos , Antígenos HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/genética , Vírus da Estomatite Vesicular Indiana/genética , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/uso terapêutico , Adjuvantes Imunológicos , Animais , Terapia Antirretroviral de Alta Atividade , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Antígenos HIV/genética , HIV-1/imunologia , Humanos , Fatores Imunológicos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas Sintéticas , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular Indiana/patogenicidade
12.
J Virol ; 80(9): 4447-57, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611905

RESUMO

Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.


Assuntos
Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Células Th1/imunologia , Vagina/imunologia , Vagina/virologia , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/imunologia , Animais , Formação de Anticorpos/imunologia , Feminino , Vetores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Cobaias , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Camundongos , Modelos Animais , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
13.
J Virol Methods ; 135(1): 91-101, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16569439

RESUMO

Recovery of recombinant, negative-strand, nonsegmented RNA viruses from a genomic cDNA clone requires a rescue system that promotes de novo assembly of a functional ribonucleoprotein (RNP) complex in the cell cytoplasm. This is accomplished typically by cotransfecting permissive cells with multiple plasmids that encode the positive-sense genomic RNA, the nucleocapsid protein (N or NP), and the two subunits of the viral RNA-dependent RNA polymerase (L and P). The transfected plasmids are transcribed in the cell cytoplasm by phage T7 RNA polymerase (T7 RNAP), which usually is supplied by infection with a recombinant vaccinia virus or through use of a stable cell line that expresses the polymerase. Although both methods of providing T7 RNAP are effective neither is ideal for viral vaccine development for a number of reasons. Therefore, it was necessary to modify existing technology to make it possible to routinely rescue a variety of recombinant viruses when T7 RNAP was provided by a cotransfected expression plasmid. Development of a broadly applicable procedure required optimization of the helper-virus-free methodology, which resulted in several modifications that improved rescue efficiency such as inclusion of plasmids encoding viral glycoproteins and matrix protein, heat shock treatment, and use of electroporation. The combined effect of these enhancements produced several important benefits including: (1) a helper-virus-free methodology capable of rescuing a diverse variety of paramyxoviruses and recombinant vesicular stomatitis virus (rVSV); (2) methodology that functioned effectively when using Vero cells, a suitable substrate for vaccine production; and (3) a method that enabled rescue of highly attenuated recombinant viruses, which had proven refractory to rescue using published procedures.


Assuntos
Paramyxovirinae/isolamento & purificação , Vacinas Atenuadas , Vírus da Estomatite Vesicular Indiana/isolamento & purificação , Vacinas Virais/genética , Animais , Chlorocebus aethiops , DNA Recombinante , DNA Viral , RNA Polimerases Dirigidas por DNA/genética , Vírus Auxiliares/genética , Mutação , Paramyxovirinae/genética , Plasmídeos/genética , RNA Viral/metabolismo , Transfecção , Vacinas Atenuadas/genética , Vacinas Sintéticas/genética , Células Vero , Vírus da Estomatite Vesicular Indiana/genética , Proteínas Virais/genética , Replicação Viral/genética , Replicação Viral/fisiologia
14.
Virology ; 348(1): 107-19, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16445957

RESUMO

Measles virus V protein is a Cys-rich polypeptide that is dispensable for virus propagation in continuous cell lines, but necessary for efficient viral replication in animals. Those functions modulating virus propagation in vivo are not understood completely, although V protein is known to interfere with the host interferon response and control of viral gene expression. The ability to modulate gene expression was investigated further with a minireplicon transient expression system in which V protein was found to repress reporter activity. Two regions of the polypeptide contributed to this repressive effect including the carboxy-terminus and a region conserved in morbillivirus V proteins located between amino acids 110-131, whereas domains known to mediate the interaction between V and the nucleocapsid (N) protein were not essential. Accumulation of encapsidated minigenome in transfected cells was inhibited by V protein suggesting that it acted as a repressor of genome replication thereby limiting availability of template for reporter gene mRNA transcription.


Assuntos
Cloranfenicol O-Acetiltransferase/análise , Regulação Viral da Expressão Gênica , Vírus do Sarampo/fisiologia , Fosfoproteínas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Fusão Gênica Artificial , Linhagem Celular , Cloranfenicol O-Acetiltransferase/genética , Sequência Conservada , Análise Mutacional de DNA , Genes Reporter , Genoma Viral/genética , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fosfoproteínas/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , RNA Viral/análise , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas Virais/genética , Replicação Viral
15.
Virology ; 347(2): 296-306, 2006 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-16413592

RESUMO

The genetic and phenotypic stability of viruses isolated from young children following intranasal administration of the trivalent live-attenuated influenza virus vaccine (LAIV, marketed in the United States as FluMist) was evaluated by determination of genomic sequence and assessment of the cold-adapted (ca), temperature-sensitive (ts) and attenuated (att) phenotypes. The complete genomic sequence was determined for 56 independent isolates obtained from children following vaccination (21 type A/H1N1, 12 A/H3N2, 1 A/H3N1 and 22 type B viruses), 20% of which had no nucleotide misincorporations compared with administered vaccine. The remaining isolates had from one to seven changes per genome. None of the observed misincorporations resulted in predicted amino acid codon substitutions at sites previously shown to contribute to the ca, ts or att phenotypes, and all vaccine-derived isolates retained ca and ts phenotypes consistent with the observation that none of the vaccine recipients displayed distinctive symptoms. The results indicate that LAIV strains undergo very limited genetic change following replication in vaccine recipients and that those changes did not affect vaccine attenuation.


Assuntos
Adaptação Fisiológica , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Animais , Creches , Pré-Escolar , Temperatura Baixa , Feminino , Furões , Humanos , Imunização , Lactente , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Vírus da Influenza B/crescimento & desenvolvimento , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Masculino , Nasofaringe/microbiologia
16.
Vaccine ; 24(12): 2151-60, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16413951

RESUMO

FluMist is a live-attenuated, trivalent influenza vaccine (LAIV) recently approved for intranasal administration. To demonstrate genetic stability during manufacture of the vaccine viruses in LAIV and a similar vaccine in development (CAIV-T), full genome consensus sequences were determined at multiple manufacturing stages for four influenza type A and five type B strains. The critical cold-adapted (ca), temperature-sensitive (ts) and attenuated (att) mutations were preserved in the virus manufacturing intermediates. Moreover, sequence identity was observed for all vaccine intermediates of the same strain. Minor sequence differences were noted in the shared gene segments of the vaccine viruses and their common progenitor master donor virus (MDV) and several of the hemagglutinin (HA) and neuraminidase (NA) genes contained nucleotide differences when compared to the wild-type parent. Nonetheless, all vaccine viruses retained the ca, ts, and att phenotypes. Thus, genetic and phenotypic stability of the vaccine viruses is maintained during the manufacture of LAIV/CAIV-T vaccines.


Assuntos
Adaptação Fisiológica/fisiologia , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Cultura de Vírus , Administração Intranasal , Aerossóis , Temperatura Baixa , Vírus da Influenza A/química , Vírus da Influenza A/fisiologia , Vacinas contra Influenza/química , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética
17.
Virology ; 348(1): 96-106, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16442140

RESUMO

Measles virus V protein represses genome replication through a poorly understood mechanism, which led us to investigate whether V protein might be an RNA-binding modulatory factor. Recombinant V protein, expressed from transfected HEp-2 cells or E. coli, formed protein-RNA complexes with poly-guanosine (poly-G) or poly-U linked to agarose beads. RNA binding was not exclusive to ribonucleotide homopolymers as complex formation between V protein and an RNA molecule equivalent to the 3' terminal 107 bases of the measles virus genome was observed with an electrophoretic mobility shift assay (EMSA). The interaction with poly-G was used to further examine the RNA binding properties of V demonstrating that protein-RNA complex formation was dependent upon the unique Cys-rich carboxy terminus, a region also required to induce maximal repression of minireplicon-encoded reporter gene expression in transient assays. Surprisingly, two mutant proteins that contained Cys-to-Ala substitutions in the C-terminus were found to retain their ability to bind poly-G binding and repress minireplicon reporter gene expression indicating that neither activity was dependent on the integrity of all 7 C-terminal Cys residues. Additional genetic analysis revealed that amino acids 238-266 were necessary for efficient RNA binding and overlapped with residues (238-278) required for maximal repression induced by the C-terminal domain. In addition, a 10 amino acid deletion was identified (residues 238-247) that blocked RNA binding and repression indicating that these two activities were related.


Assuntos
Vírus do Sarampo/fisiologia , Fosfoproteínas/fisiologia , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Virais/fisiologia , Replicação Viral , Substituição de Aminoácidos , Fusão Gênica Artificial , Linhagem Celular , Cisteína/genética , Cisteína/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Genes Reporter , Humanos , Luciferases/análise , Luciferases/genética , Mutação de Sentido Incorreto , Fosfoproteínas/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Proteínas Virais/genética
18.
Virus Res ; 115(1): 9-15, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16099066

RESUMO

An intranasally delivered, live attenuated, temperature sensitive (ts) respiratory syncytial virus vaccine candidate, rA2cp248/404/1,030DeltaSH, exhibits a low level of genetic instability in clinical studies, in contrast to the relatively high stability of two similar candidates, cpts248/404 and rA2cp248/404DeltaSH. The latter strains, containing two ts mutations (248ts and 404ts), are partially growth restricted at 37 degrees C, whereas, rA2cp248/404/1,030DeltaSH contains an additional ts mutation (1,030ts) that increases attenuation and partially restricts virus growth at 35 degrees C. Since the maximum human airway temperature is 35.5 degrees C, we investigated whether growth restriction at 35 degrees C contributes to genetic instability of rA2cp248/404/1,030DeltaSH in vitro. We conducted in vitro passage studies with the three strains at 32 degrees C (a fully permissive growth temperature) and 35 degrees C (restrictive for only rA2cp248/404/1,030DeltaSH). Instability of the ts phenotype was observed only in rA2cp248/404/1,030DeltaSH passaged at 35 degrees C, and corresponded with reversion at the 248ts or 1,030ts mutation sites, as observed in clinical studies. This study indicates that ts mutations that partially restrict replication at physiologic temperatures may contribute to genetic instability of viruses in vivo. In vitro passage studies performed at appropriate temperatures can be used to assess genetic stability and to prioritize ts vaccine candidates for clinical evaluation.


Assuntos
Instabilidade Genômica , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/genética , Vacinação , Vacinas Virais/genética , Administração Intranasal , Animais , Chlorocebus aethiops , Humanos , Mutação , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/crescimento & desenvolvimento , Inoculações Seriadas , Temperatura , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Células Vero , Vacinas Virais/administração & dosagem
19.
AIDS Res Hum Retroviruses ; 21(7): 629-43, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16060834

RESUMO

Of the various approaches being developed as prophylactic HIV vaccines, those based on a heterologous plasmid DNA prime, live vector boost vaccination regimen appear especially promising in the nonhuman primate/simian-human immunodeficiency virus (SHIV) challenge model. In this study, we sought to determine whether a series of intramuscular priming immunizations with a plasmid DNA vaccine expressing SIVgag p39, in combination with plasmid expressed rhesus IL-12, could effectively enhance the immunogenicity and postchallenge efficacy of two intranasal doses of recombinant vesicular stomatitis virus (rVSV)-based vectors expressing HIV-1 env 89.6P gp160 and SIVmac239 gag p55 in rhesus macaques. In macaques receiving the combination plasmid DNA prime, rVSV boost vaccination regimen we observed significantly increased SIVgag- specific cell-mediated and humoral immune responses and significantly lower viral loads postintravenous SHIV89.6P challenge relative to macaques receiving only the rVSV vectored immunizations. In addition, the plasmid DNA prime, rVSV boost vaccination regimen also tended to increase the preservation of peripheral blood CD4+ cells and reduce the morbidity and mortality associated with SHIV89.6P infection. An analysis of immune correlates of protection after SHIV89.6P challenge revealed that the prechallenge SHIV-specific IFN-gamma ELISpot response elicited by vaccination and the ability of the host to mount a virus-specific neutralizing antibody response postchallenge correlated with postchallenge clinical outcome. The correlation between vaccine-elicited cell-mediated immune responses and an improved clinical outcome after SHIV challenge provides strong justification for the continued development of a cytokine-enhanced plasmid DNA prime, rVSV vector boost immunization regimen for the prevention of HIV infection.


Assuntos
Vacinas contra a AIDS/imunologia , DNA/genética , Produtos do Gene gag/genética , Interleucina-12/genética , Plasmídeos , Vírus da Imunodeficiência Símia/genética , Vírus da Estomatite Vesicular Indiana/genética , Animais , Sequência de Bases , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Macaca mulatta , Testes de Neutralização , Recombinação Genética , Carga Viral
20.
AIDS Res Hum Retroviruses ; 20(9): 989-1004, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15585086

RESUMO

An experimental AIDS vaccine based on attenuated, recombinant vesicular stomatitis virus (rVSV), when administered by a combination of parenteral and mucosal routes, has proven effective at preventing AIDS in a rhesus macaque model (Rose NF, et al.: Cell 2001;106:539-549). In an effort to determine the optimal route of vaccine administration we evaluated the ability of rVSV-based vaccine vectors expressing HIV-1 Env and SIV Gag proteins, when given either intramuscularly (i.m.) or intranasally (i.n.), to elicit antigen-specific cellular and humoral immune responses, and to protect from a subsequent vaginal challenge with simian-human immunodeficiency virus (SHIV89.6P). Our results demonstrate that macaques vaccinated by the i.n. route developed significantly higher antigen-specific cellular immune responses as determined by MHC class I tetramer staining, IFN-gamma ELISPOT, and cytotoxic T cell assays. However, systemic and mucosal humoral immune responses did not vary significantly with the route of vaccine administration. Given the importance of cell-mediated immune responses in slowing AIDS progression, intranasal delivery of a VSV-based AIDS vaccine may be an optimal as well as practical route for vaccination and should be considered in design of clinical trials.


Assuntos
Vacinas contra a AIDS/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Vetores Genéticos/imunologia , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Vacinas contra a AIDS/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Feminino , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Vetores Genéticos/administração & dosagem , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Injeções Intramusculares , Interferon gama/biossíntese , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T/imunologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vírus da Estomatite Vesicular Indiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA