Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
1.
Diagnostics (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732348

RESUMO

Several breast pathologies can affect the skin, and clinical pathways might differ significantly depending on the underlying diagnosis. This study investigates the feasibility of using diffusion-weighted imaging (DWI) to differentiate skin pathologies in breast MRIs. This retrospective study included 88 female patients who underwent diagnostic breast MRI (1.5 or 3T), including DWI. Skin areas were manually segmented, and the apparent diffusion coefficients (ADCs) were compared between different pathologies: inflammatory breast cancer (IBC; n = 5), benign skin inflammation (BSI; n = 11), Paget's disease (PD; n = 3), and skin-involved breast cancer (SIBC; n = 11). Fifty-eight women had healthy skin (H; n = 58). The SIBC group had a significantly lower mean ADC than the BSI and IBC groups. These differences persisted for the first-order features of the ADC (mean, median, maximum, and minimum) only between the SIBC and BSI groups. The mean ADC did not differ significantly between the BSI and IBC groups. Quantitative DWI assessments demonstrated differences between various skin-affecting pathologies, but did not distinguish clearly between all of them. More extensive studies are needed to assess the utility of quantitative DWI in supplementing the diagnostic assessment of skin pathologies in breast imaging.

2.
J Biophotonics ; : e202400106, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719459

RESUMO

To date, the appropriate training required for the reproducible operation of multispectral optoacoustic tomography (MSOT) is poorly discussed. Therefore, the aim of this study was to assess the teachability of MSOT imaging. Five operators (two experienced and three inexperienced) performed repositioning imaging experiments. The inexperienced received the following introductions: personal supervision, video meeting, or printed introduction. The task was to image the exact same position on the calf muscle for seven times on five volunteers in two rounds of investigations. In the first session, operators used ultrasound guidance during measurements while using only photoacoustic data in the second session. The performance comparison was carried out with full-reference image quality measures to quantitatively assess the difference between repeated scans. The study demonstrates that given a personal supervision and hybrid ultrasound real-time imaging in MSOT measurements, inexperienced operators are able to achieve the same level as experienced operators in terms of repositioning accuracy.

3.
Kidney Int Rep ; 9(5): 1310-1320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707813

RESUMO

Introduction: Tissue Na+ overload is present in patients receiving hemodialysis (HD) and is associated with cardiovascular mortality. Strategies to actively modify tissue Na+ amount in these patients by adjusting the HD regimen have not been evaluated. Methods: In several substudies, including cross-sectional analyses (n = 75 patients on HD), a cohort study and a cross-over interventional study (n = 10 patients each), we assessed the impact of ultrafiltration (UF) volume, prolongation of dialysis treatment time, and modification of dialysate Na+ concentration on tissue Na+ content using 23Na magnetic resonance imaging (23Na-MRI). Results: In the cross-sectional analysis of our patients on HD, differences in dialysate sodium concentration ([Na+]) were associated with changes in tissue Na+ content, whereas neither UF volume nor HD treatment time affected tissue Na+ amount. Skin Na+ content was lower in 17 patients on HD, with dialysate [Na+] of <138 mmol/l compared to 58 patients dialyzing at ≥138 mmol/l (20.7 ± 7.3 vs. 26.0 ± 8.8 arbitrary units [a.u.], P < 0.05). In the cohort study, intraindividual prolongation of HD treatment time was not associated with a reduction in tissue Na+ content. Corresponding to the observational data, intraindividual modification of dialysate [Na+] from 138 to 142 to 135 mmol/l resulted in concordant changes in skin Na+ (24.3 ± 7.6 vs. 26.3 ± 8.0 vs. 20.8 ± 5.6 a.u, P < 0.05 each), whereas no significant change in muscle Na+ occurred. Conclusion: Solely adjustment of dialysate [Na+] had a reproducible impact on tissue Na+ content. 23Na-MRI could be utilized to monitor the effectiveness of dialysate [Na+] modifications in randomized-controlled outcome trials.

4.
Skeletal Radiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607418

RESUMO

OBJECTIVE: To compare image quality and diagnostic performance of 3T and 7T magnetic resonance imaging (MRI) for direct depiction of finger flexor pulleys A2, A3 and A4 before and after artificial pulley rupture in an ex-vivo model using anatomic preparation as reference. MATERIALS AND METHODS: 30 fingers from 10 human cadavers were examined at 3T and 7T before and after being subjected to iatrogenic pulley rupture. MRI protocols were comparable in duration, both lasting less than 22 min. Two experienced radiologists evaluated the MRIs. Image quality was graded according to a 4-point Likert scale. Anatomic preparation was used as gold standard. RESULTS: In comparison, 7T versus 3T had a sensitivity and specificity for the detection of A2, A3 and A4 pulley lesions with 100% vs. 95%, respectively 98% vs. 100%. In the assessment of A3 pulley lesions sensitivity of 7T was superior to 3T MRI (100% vs. 83%), whereas specificity was lower (95% vs. 100%). Image quality assessed before and after iatrogenic rupture was comparable with 2.74 for 7T and 2.61 for 3T. Visualization of the A3 finger flexor pulley before rupture creation was significantly better for 7 T (p < 0.001). Interobserver variability showed substantial agreement at 3T (κ = 0.80) and almost perfect agreement at 7T (κ = 0.90). CONCLUSION: MRI at 3T allows a comparable diagnostic performance to 7T for direct visualization and characterization of finger flexor pulleys before and after rupture, with superiority of 7T MRI in the visualization of the normal A3 pulley.

5.
Magn Reson Med ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688865

RESUMO

PURPOSE: To determine whether intravoxel incoherent motion (IVIM) describes the blood perfusion in muscles better, assuming pseudo diffusion (Bihan Model 1) or ballistic motion (Bihan Model 2). METHODS: IVIM parameters were measured in 18 healthy subjects with three different diffusion gradient time profiles (bipolar with two diffusion times and one with velocity compensation) and 17 b-values (0-600 s/mm2) at rest and after muscle activation. The diffusion coefficient, perfusion fraction, and pseudo-diffusion coefficient were estimated with a segmented fit in the gastrocnemius medialis (GM) and tibialis anterior (TA) muscles. RESULTS: Velocity-compensated gradients resulted in a decreased perfusion fraction (6.9% ± 1.4% vs. 4.4% ± 1.3% in the GM after activation) and pseudo-diffusion coefficient (0.069 ± 0.046 mm2/s vs. 0.014 ± 0.006 in the GM after activation) compared to the bipolar gradients with the longer diffusion encoding time. Increased diffusion coefficients, perfusion fractions, and pseudo-diffusion coefficients were observed in the GM after activation for all gradient profiles. However, the increase was significantly smaller for the velocity-compensated gradients. A diffusion time dependence was found for the pseudo-diffusion coefficient in the activated muscle. CONCLUSION: Velocity-compensated diffusion gradients significantly suppress the IVIM effect in the calf muscle, indicating that the ballistic limit is mostly reached, which is supported by the time dependence of the pseudo-diffusion coefficient.

7.
Sci Rep ; 14(1): 6391, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493266

RESUMO

The purpose of this feasibility study is to investigate if latent diffusion models (LDMs) are capable to generate contrast enhanced (CE) MRI-derived subtraction maximum intensity projections (MIPs) of the breast, which are conditioned by lesions. We trained an LDM with n = 2832 CE-MIPs of breast MRI examinations of n = 1966 patients (median age: 50 years) acquired between the years 2015 and 2020. The LDM was subsequently conditioned with n = 756 segmented lesions from n = 407 examinations, indicating their location and BI-RADS scores. By applying the LDM, synthetic images were generated from the segmentations of an independent validation dataset. Lesions, anatomical correctness, and realistic impression of synthetic and real MIP images were further assessed in a multi-rater study with five independent raters, each evaluating n = 204 MIPs (50% real/50% synthetic images). The detection of synthetic MIPs by the raters was akin to random guessing with an AUC of 0.58. Interrater reliability of the lesion assessment was high both for real (Kendall's W = 0.77) and synthetic images (W = 0.85). A higher AUC was observed for the detection of suspicious lesions (BI-RADS ≥ 4) in synthetic MIPs (0.88 vs. 0.77; p = 0.051). Our results show that LDMs can generate lesion-conditioned MRI-derived CE subtraction MIPs of the breast, however, they also indicate that the LDM tended to generate rather typical or 'textbook representations' of lesions.


Assuntos
Neoplasias da Mama , Meios de Contraste , Humanos , Pessoa de Meia-Idade , Feminino , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Mama/patologia , Exame Físico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Estudos Retrospectivos
8.
Front Physiol ; 15: 1349750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455842

RESUMO

Hypertension is a frequent condition in untrained middle-aged to older adults, who form the core group of whole-body electromyostimulation (WB-EMS) applicants. So far, the acute effects of varying impulse intensities on blood pressure responses have not been evaluated in normo- and hypertensive people. Thirteen hypertensive and twelve normotensive overweight WB-EMS novices, 40-70 years old, conducted the same WB-EMS protocol (20 min, bipolar, 85 Hz, 350 µs, 4 s impulse-4 s rest; combined with easy movements) with increasing impulse intensity (low, moderate, advanced) per session. Mean arterial blood pressure (MAP) as determined by automatic sphygmomanometry rose significantly (p < .001) from rest, 5 min pre-WB-EMS to immediately pre-WB-EMS assessment. Of importance, a 20-min WB-EMS application does not increase MAP further. In detail, maximum individual MAP does not exceed 128 mmHg (177 mmHg systolic or 110 mmHg diastolic) in any case. Two-min post-WB-EMS, MAP was significantly lower (p = .016) compared to immediately pre-WB-EMS. In contrast, heart rate increased significantly from immediately pre to immediately post-exercise (p < .001), though individual peak values did not exceed 140 beats/min-1 and heart rate decreased rapidly (p < .001) post-exercise. No significant differences in MAP and HR kinetics were observed for impulse intensity categories or hypertensive status. In summary, largely independently of impulse intensity and status, the acute effect of WB-EMS on MAP in novice applicants seem to be largely negligible. Although definite evidence might not have been provided by the present study, we conclude that hypertension, at least under treatment, should not be considered as a barrier for WB-EMS application in moderately old or older cohorts.

9.
BMC Geriatr ; 24(1): 141, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326734

RESUMO

BACKGROUND: Osteosarcopenia is a common geriatric syndrome with an increasing prevalence with age, leading to secondary diseases and complex consequences such as falls and fractures, as well as higher mortality and frailty rates. There is a great need for prevention and treatment strategies. METHODS: In this analysis, we used magnetic resonance imaging (MRI) data from the randomised controlled FrOST trial, which enrolled community-dwelling osteosarcopenic men aged > 72 years randomly allocated to 16 months of twice-weekly high-intensity resistance training (HIRT) or a non-training control group. MR Dixon imaging was used to quantify the effects of HIRT on muscle fat infiltration in the paraspinal muscles, determined as changes in muscle tissue, fat faction and intermuscular adipose tissue (IMAT) in the erector spinae and psoas major muscles. Intention-to-treat analysis with multiple imputation was used to analyse the data set. RESULTS: After 16 months of intervention, 15 men from the HIRT and 16 men from the CG were included in the MRI analysis. In summary, no positive effects on the fat infiltration of the erector spinae and psoas major muscles were observed. CONCLUSIONS: The previously reported positive effects on lumbar spine bone mineral density (BMD) suggest that mechanotransduction induces tropic effects on bone, but that fat infiltration of the erector spinae and psoas major muscles are either irreversible or, for some unknown reason, resistant to exercise. Because of the beneficial effects on spinal BMD, HIRT is still recommended in osteosarcopenic older men, but further research is needed to confirm appropriate age-specific training exercises for the paraspinal muscles. The potential of different MRI sequences to quantify degenerative and metabolic changes in various muscle groups must be better characterized. TRIAL REGISTRATIONS: FrOST was approved by the University Ethics Committee of the Friedrich-Alexander University of Erlangen-Nürnberg (number 67_15b and 4464b) and the Federal Office for Radiation Projection (BfS, number Z 5-2,246,212 - 2017-002). Furthermore, it fully complies with the Declaration of Helsinki and is registered at ClinicalTrials.gov: NCT03453463 (05/03/2018). JAMA 310:2191-2194, 2013.


Assuntos
Mecanotransdução Celular , Músculos Paraespinais , Idoso , Masculino , Humanos , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/fisiologia , Densidade Óssea , Tecido Adiposo/diagnóstico por imagem , Projetos de Pesquisa , Imageamento por Ressonância Magnética/métodos
10.
Eur J Radiol ; 173: 111352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330534

RESUMO

PURPOSE: Broader clinical adoption of breast magnetic resonance imaging (MRI) faces challenges such as limited availability and high procedural costs. Low-field technology has shown promise in addressing these challenges. We report our initial experience using a next-generation scanner for low-field breast MRI at 0.55T. METHODS: This initial cases series was part of an institutional review board-approved prospective study using a 0.55T scanner (MAGNETOM Free.Max, Siemens Healthcare, Erlangen/Germany: height < 2 m, weight < 3.2 tons, no quench pipe) equipped with a seven-channel breast coil (Noras, Höchberg/Germany). A multiparametric breast MRI protocol consisting of dynamic T1-weighted, T2-weighted, and diffusion-weighted sequences was optimized for 0.55T. Two radiologists with 12 and 20 years of experience in breast MRI evaluated the examinations. RESULTS: Twelve participants (mean age: 55.3 years, range: 36-78 years) were examined. The image quality was diagnostic in all examinations and not impaired by relevant artifacts. Typical imaging phenotypes were visualized. The scan time for a complete, non-abbreviated breast MRI protocol ranged from 10:30 to 18:40 min. CONCLUSION: This initial case series suggests that low-field breast MRI is feasible at diagnostic image quality within an acceptable examination time.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Mama/patologia
11.
MAGMA ; 37(2): 257-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366129

RESUMO

OBJECTIVE: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design. METHODS: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations. RESULTS: Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds. DISCUSSION: An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Frequência Cardíaca , Vértebras Cervicais/diagnóstico por imagem
12.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339689

RESUMO

Whole-body electromyostimulation (WB-EMS) can be considered as a time-efficient, joint-friendly, and highly customizable training technology that attracts a wide range of users. The present evidence map aims to provide an overview of different non-athletic cohorts addressed in WB-EMS research. Based on a comprehensive systematic search according to PRISMA, eighty-six eligible longitudinal trials were identified that correspond with our eligibility criteria. In summary, WB-EMS research sufficiently covers all adult age categories in males and females. Most cohorts addressed (58%) were predominately or exclusively overweight/obese, and in about 60% of them, diseases or conditions were inclusion criteria for the trials. Cohorts specifically enrolled in WB-EMS trials suffer from cancer/neoplasm (n = 7), obesity (n = 6), diabetes mellitus (n = 5), metabolic syndrome (n = 2), nervous system diseases (n = 2), chronic heart failure (n = 4), stroke (n = 1), peripheral arterial diseases (n = 2), knee arthrosis (n = 1), sarcopenia (n = 3), chronic unspecific low back pain (n = 4), and osteopenia (n = 3). Chronic kidney disease was an eligibility criterion in five WB-EMS trials. Finally, three studies included only critically ill patients, and two further studies considered frailty as an inclusion criterion. Of importance, no adverse effects of the WB-EMS intervention were reported. In summary, the evidence gaps in WB-EMS research were particular evident for cohorts with diseases of the nervous and cerebrovascular system.


Assuntos
Terapia por Estimulação Elétrica , Dor Lombar , Sarcopenia , Masculino , Adulto , Feminino , Humanos , Músculo Esquelético/fisiologia , Obesidade/terapia
13.
Eur Radiol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345606

RESUMO

OBJECTIVES: The purpose of this study was to assess morphological and quantitative changes of the anterior cruciate ligament (ACL) and cartilage after ACL repair. METHODS: 7T MRI of the knee was acquired in 31 patients 1.5 years after ACL repair and in 13 controls. Proton density-weighted images with fat saturation (PD-fs) were acquired to assess ACL width, signal intensity, elongation, and fraying. T2/T2* mapping was performed for assessment of ACL and cartilage. Segmentation of the ACL, femoral, and tibial cartilage was carried out at 12 ROIs. The outcome evaluation consisted of the Lysholm Knee Score and International Knee Documentation Committee (IKDC) subjective score and clinical examination. RESULTS: ACL showed a normal signal intensity in 96.8% and an increased width in 76.5% after repair. Fraying occurred in 22.6% without having an impact on the clinical outcome (Lysholm score: 90.39 ± 9.75, p = 0.76 compared to controls). T2 analysis of the ACL revealed no difference between patients and controls (p = 0.74). Compared to controls, assessment of the femoral and tibial cartilage showed a significant increase of T2* times in all ROIs, except at the posterolateral femur. Patients presented a good outcome in clinical examination with a Lysholm score of 87.19 ± 14.89 and IKDC of 80.23 ± 16.84. CONCLUSION: T2 mapping results suggest that the tissue composition of the ACL after repair is similar to that of a native ACL after surgery, whereas the ACL exhibits an increased width. Fraying of the ACL can occur without having any impact on functional outcomes. T2* analysis revealed early degradation at the cartilage. CLINICAL RELEVANCE STATEMENT: MRI represents a noninvasive diagnostic tool for the morphological and compositional assessment of the anterior cruciate ligament after repair, whereas knowledge about post-surgical alterations is crucial for adequate imaging interpretation. KEY POINTS: • There has been renewed interest in repairing the anterior cruciate ligament with a proximally torn ligament. • T2 times of the anterior cruciate ligament do not differ between anterior cruciate ligament repair patients and controls. • T2 mapping may serve as a surrogate for the evaluation of the anterior cruciate ligament after repair.

14.
Photoacoustics ; 35: 100579, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312805

RESUMO

Peripheral arterial disease (PAD) leads to chronic vascular occlusion and results in end organ damage in critically perfused limbs. There are currently no clinical methods available to determine the muscular damage induced by chronic mal-perfusion. This monocentric prospective cross-sectional study investigated n = 193 adults, healthy to severe PAD, in order to quantify the degree of calf muscle degeneration caused by PAD using a non-invasive hybrid ultrasound and single wavelength optoacoustic imaging (US/SWL-OAI) approach. While US provides morphologic information, SWL-OAI visualizes the absorption of pulsed laser light and the resulting sound waves from molecules undergoing thermoelastic expansion. US/SWL-OAI was compared to multispectral data, clinical disease severity, angiographic findings, phantom experiments, and histological examinations from calf muscle biopsies. We were able to show that synergistic use of US/SWL-OAI is most likely to map clinical degeneration of the muscle and progressive PAD.

15.
Skeletal Radiol ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381197

RESUMO

This narrative review explores recent advancements and applications of modern low-field (≤ 1 Tesla) magnetic resonance imaging (MRI) in musculoskeletal radiology. Historically, high-field MRI systems (1.5 T and 3 T) have been the standard in clinical practice due to superior image resolution and signal-to-noise ratio. However, recent technological advancements in low-field MRI offer promising avenues for musculoskeletal imaging. General principles of low-field MRI systems are being introduced, highlighting their strengths and limitations compared to high-field counterparts. Emphasis is placed on advancements in hardware design, including novel magnet configurations, gradient systems, and radiofrequency coils, which have improved image quality and reduced susceptibility artifacts particularly in musculoskeletal imaging. Different clinical applications of modern low-field MRI in musculoskeletal radiology are being discussed. The diagnostic performance of low-field MRI in diagnosing various musculoskeletal pathologies, such as ligament and tendon injuries, osteoarthritis, and cartilage lesions, is being presented. Moreover, the discussion encompasses the cost-effectiveness and accessibility of low-field MRI systems, making them viable options for imaging centers with limited resources or specific patient populations. From a scientific standpoint, the amount of available data regarding musculoskeletal imaging at low-field strengths is limited and often several decades old. This review will give an insight to the existing literature and summarize our own experiences with a modern low-field MRI system over the last 3 years. In conclusion, the narrative review highlights the potential clinical utility, challenges, and future directions of modern low-field MRI, offering valuable insights for radiologists and healthcare professionals seeking to leverage these advancements in their practice.

16.
Clin Kidney J ; 17(1): sfad237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186882

RESUMO

Background: Renal denervation (RDN) has emerged as an adjacent option for the treatment of hypertension. This analysis of the Erlanger registry aimed to compare the blood pressure (BP)-lowering effects and safety of RDN in patients with and without chronic kidney disease (CKD). Methods: In this single-center retrospective analysis, 47 patients with and 127 without CKD underwent radiofrequency-, ultrasound- or alcohol-infusion-based RDN. Office and 24-h ambulatory BP and estimated glomerular filtration rate (eGFR) were measured at baseline, and after 6 and 12 months. Results: A total of 174 patients with a mean age of 59.0 ± 10 years were followed up for 12 months. At baseline, mean eGFR was 55.8 ± 21 mL/min/1.73 m2 in patients with CKD and 87.3 ± 13 mL/min/1.73 m2 in patients without CKD. There was no significant eGFR decline in either of the groups during 12 months of follow-up. In patients without CKD, office systolic and diastolic BP were reduced by -15.3 ± 17.5/-7.9 ± 10.8 mmHg 6 months after RDN and by -16.1 ± 18.2/-7.7 ± 9.6 mmHg 12 months after RDN. In patients with CKD, office systolic and diastolic BP were reduced by -10.7 ± 24.0/-5.8 ± 13.2 mmHg 6 months after RDN and by -15.1 ± 24.9/-5.9 ± 12.9 mmHg 12 months after RDN. Accordingly, in patients without CKD, 24-h ambulatory systolic and diastolic BP were reduced by -7.2 ± 15.8/-4.9 ± 8.8 mmHg 6 months after RDN and by -9.0 ± 17.0/-6.2 ± 9.8 mmHg 12 months after RDN. In patients with CKD, 24-h systolic and diastolic BP were reduced by -7.4 ± 12.9/-4.2 ± 9.9 mmHg 6 months after RDN and by -8.0 ± 14.0/-3.6 ± 9.6 mmHg 12 months after RDN. There was no difference in the reduction of office and 24-h ambulatory BP between the two groups at any time point (all P > .2). Similar results have been found for the 6 months data. With exception of rare local adverse events, we did not observe any safety signals. Conclusion: According to our single-center experience, we observed a similar reduction in 24-h, day and night-time ambulatory BP as well as in-office BP in patients with and without CKD at any time point up to 12 months. We conclude that RDN is an effective and safe treatment option for patients with hypertension and CKD.

18.
Invest Radiol ; 59(3): 223-229, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493286

RESUMO

OBJECTIVES: Temporomandibular disorders (TMDs) are common and may cause persistent functional limitations and pain. Magnetic resonance imaging (MRI) at 1.5 and 3 T is commonly applied for the evaluation of the temporomandibular joint (TMJ). No evidence is available regarding the feasibility of modern low-field MRI for the assessment of TMDs. The objective of this prospective study was to evaluate the image quality (IQ) of 0.55 T MRI in direct comparison with 1.5 T MRI. MATERIALS AND METHODS: Seventeen patients (34 TMJs) with suspected intraarticular TMDs were enrolled, and both 0.55 and 1.5 T MRI were performed on the same day. Two senior readers independently evaluated the IQ focusing on the conspicuity of disc morphology (DM), disc position (DP), and osseous joint morphology (OJM) for each joint. We analyzed the IQ and degree of artifacts using a 4-point Likert scale (LS) at both field strengths. A fully sufficient IQ was defined as an LS score of ≥3. Nonparametric Wilcoxon test for related samples was used for statistical comparison. RESULTS: The median IQ for the DM and OJM at 0.55 T was inferior to that at 1.5 T (DM: 3 [interquartile range {IQR}, 3-4] vs 4 [IQR, 4-4]; OJM: 3 [IQR, 3-4] vs 4 [IQR 4-4]; each P < 0.001). For DP, the IQ was comparable (4 [IQR 3-4] vs 4 [IQR 4-4]; P > 0.05). A sufficient diagnostic IQ was maintained for the DM, DP, and OJM in 92% of the cases at 0.55 T and 100% at 1.5 T. Minor image artifacts (LS score of ≥3) were more prevalent at 0.55 T (29%) than at 1.5 T (12%). CONCLUSIONS: Magnetic resonance imaging of the TMJ at 0.55 T yields a lower IQ than does MRI at 1.5 T but maintains sufficient diagnostic confidence in the majority of patients. Further improvements are needed for reliable clinical application.


Assuntos
Disco da Articulação Temporomandibular , Transtornos da Articulação Temporomandibular , Humanos , Disco da Articulação Temporomandibular/patologia , Estudos Prospectivos , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/patologia , Imageamento por Ressonância Magnética/métodos
19.
Invest Radiol ; 59(3): 215-222, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490031

RESUMO

OBJECTIVES: The aim of this study was to evaluate the accuracy of modern low-field magnetic resonance imaging (MRI) for lung nodule detection and to correlate nodule size measurement with computed tomography (CT) as reference. MATERIALS AND METHODS: Between November 2020 and July 2021, a prospective clinical trial using low-field MRI at 0.55 T was performed in patients with known pulmonary nodules from a single academic medical center. Every patient underwent MRI and CT imaging on the same day. The primary aim was to evaluate the detection accuracy of pulmonary nodules using MRI with transversal periodically rotated overlapping parallel lines with enhanced reconstruction in combination with coronal half-Fourier acquired single-shot turbo spin-echo MRI sequences. The secondary outcome was the correlation of the mean lung nodule diameter with CT as reference according to the Lung Imaging Reporting and Data System. Nonparametric Mann-Whitney U test, Spearman rank correlation coefficient, and Bland-Altman analysis were applied to analyze the results. RESULTS: A total of 46 participants (mean age ± SD, 66 ± 11 years; 26 women) were included. In a blinded analysis of 964 lung nodules, the detection accuracy was 100% for those ≥6 mm (126/126), 80% (159/200) for those ≥4-<6 mm, and 23% (147/638) for those <4 mm in MRI compared with reference CT. Spearman correlation coefficient of MRI and CT size measurement was r = 0.87 ( P < 0.001), and the mean difference was 0.16 ± 0.9 mm. CONCLUSIONS: Modern low-field MRI shows excellent accuracy in lesion detection for lung nodules ≥6 mm and a very strong correlation with CT imaging for size measurement, but could not compete with CT in the detection of small nodules.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Feminino , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
20.
Radiol Med ; 129(2): 268-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017228

RESUMO

OBJECTIVES: To compare a novel, non-contrast, flow-independent, 3D isotropic magnetic resonance angiography (MRA) sequence that combines respiration compensation, electrocardiogram (ECG)-triggering, undersampling, and Dixon water-fat separation with an ECG-triggered aortic high-pitch computed tomography angiography (CTA) of the aorta. MATERIALS AND METHODS: Twenty-five patients with recent CTA were scheduled for non-contrast MRA on a 3 T MRI. Aortic diameters and cross-sectional areas were measured on MRA and CTA using semiautomatic measurement tools at 11 aortic levels. Image quality was assessed independently by two radiologists on predefined aortic levels, including myocardium, proximal aortic branches, pulmonary veins and arteries, and the inferior (IVC) and superior vena cava (SVC). Image quality was assessed on a 5-point Likert scale. RESULTS: All datasets showed diagnostic image quality. Visual grading was similar for MRA and CTA regarding overall image quality (0.71), systemic arterial image quality (p = 0.07-0.91) and pulmonary artery image quality (p = 0.05). Both readers favored MRA for SVC and IVC, while CTA was preferred for pulmonary veins (all p < 0.05). No significant difference was observed in aortic diameters or cross-sectional areas between native MRA and contrast-enhanced CTA (p = 0.08-0.94). CONCLUSION: The proposed non-contrast MRA enables robust imaging of the aorta, its proximal branches and the pulmonary arteries and great veins with image quality and aortic diameters and cross-sectional areas comparable to that of CTA. Moreover, this technique represents a suitable free-breathing alternative, without the use of contrast agents or ionizing radiation. Therefore, it is especially suitable for patients requiring repetitive imaging.


Assuntos
Angiografia por Tomografia Computadorizada , Meios de Contraste , Humanos , Angiografia por Ressonância Magnética/métodos , Veia Cava Superior/diagnóstico por imagem , Artéria Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA