Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 11: 1048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013449

RESUMO

Heavy alcohol drinking dysregulates lipid metabolism, promoting hepatic steatosis - the first stage of alcohol-related liver disease (ALD). The molecular circadian clock plays a major role in synchronizing daily rhythms in behavior and metabolism and clock disruption can cause pathology, including liver disease. Previous studies indicate that alcohol consumption alters liver clock function, but the impact alcohol or clock disruption, or both have on the temporal control of hepatic lipid metabolism and injury remains unclear. Here, we undertook studies to determine whether genetic disruption of the liver clock exacerbates alterations in lipid metabolism and worsens steatosis in alcohol-fed mice. To address this question, male liver-specific Bmal1 knockout (LKO) and flox/flox (Fl/Fl) control mice were fed a control or alcohol-containing diet for 5 weeks. Alcohol significantly dampened diurnal rhythms of mRNA levels in clock genes Bmal1 and Dbp, phase advanced Nr1d1/REV-ERBα, and induced arrhythmicity in Clock, Noct, and Nfil3/E4BP4, with further disruption in livers of LKO mice. Alcohol-fed LKO mice exhibited higher plasma triglyceride (TG) and different time-of-day patterns of hepatic TG and macrosteatosis, with elevated levels of small droplet macrosteatosis compared to alcohol-fed Fl/Fl mice. Diurnal rhythms in mRNA levels of lipid metabolism transcription factors (Srebf1, Nr1h2, and Ppara) were significantly altered by alcohol and clock disruption. Alcohol and/or clock disruption significantly altered diurnal rhythms in mRNA levels of fatty acid (FA) synthesis and oxidation (Acaca/b, Mlycd, Cpt1a, Fasn, Elovl5/6, and Fads1/2), TG turnover (Gpat1, Agpat1/2, Lpin1/2, Dgat2, and Pnpla2/3), and lipid droplet (Plin2/5, Lipe, Mgll, and Abdh5) genes, along with protein abundances of p-ACC, MCD, and FASN. Lipidomics analyses showed that alcohol, clock disruption, or both significantly altered FA saturation and remodeled the FA composition of the hepatic TG pool, with higher percentages of several long and very long chain FA in livers of alcohol-fed LKO mice. In conclusion, these results show that the liver clock is important for maintaining temporal control of hepatic lipid metabolism and that disrupting the liver clock exacerbates alcohol-related hepatic steatosis.

2.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G431-G447, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191941

RESUMO

Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen metabolism genes and proteins in livers of hepatocyte-specific BMAL1 knockout and littermate control mice fed alcohol. Our findings provide new insights into potential mechanisms by which alcohol alters glycogen, an important energy source for liver and other organs.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Consumo de Bebidas Alcoólicas/metabolismo , Ritmo Circadiano , Deleção de Genes , Glicogênio/metabolismo , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Fatores de Transcrição ARNTL/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/patologia , Animais , Ritmo Circadiano/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genótipo , Glucose/metabolismo , Hepatócitos/patologia , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos Knockout , Fenótipo , Fatores de Tempo
3.
Biomolecules ; 5(4): 2504-37, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26473939

RESUMO

Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.


Assuntos
Etanol/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Humanos , Fígado/lesões , Proteínas Circadianas Period/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 308(11): G964-74, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25857999

RESUMO

Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Ritmo Circadiano , Etanol/efeitos adversos , Glicogênio Hepático/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Dieta , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Expressão Gênica/efeitos dos fármacos , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio Fosforilase Hepática , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
5.
Redox Biol ; 2: 1038-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25454745

RESUMO

Chronic ethanol-mediated oxidative stress and lipid peroxidation increases the levels of various reactive lipid species including 4-hydroxynonenal (4-HNE), which can subsequently modify proteins in the liver. It has been proposed that 4-HNE modification adversely affects the structure and/or function of mitochondrial proteins, thereby impairing mitochondrial metabolism. To determine whether chronic ethanol consumption increases levels of 4-HNE modified proteins in mitochondria, male rats were fed control and ethanol-containing diets for 5 weeks and mitochondrial samples were analyzed using complementary proteomic methods. Five protein bands (approx. 35, 45, 50, 70, and 90kDa) showed strong immunoreactivity for 4-HNE modified proteins in liver mitochondria from control and ethanol-fed rats when proteins were separated by standard 1D SDS-PAGE. Using high-resolution proteomic methods (2D IEF/SDS-PAGE and BN-PAGE) we identified several mitochondrial proteins immunoreactive for 4-HNE, which included mitofilin, dimethylglycine dehydrogenase, choline dehydrogenase, electron transfer flavoprotein α, cytochrome c1, enoyl CoA hydratase, and cytochrome c. The electron transfer flavoprotein α consistently showed increased 4-HNE immunoreactivity in mitochondria from ethanol-fed rats as compared to mitochondria from the control group. Increased 4-HNE reactivity was also detected for dimethylglycine dehydrogenase, enoyl CoA hydratase, and cytochrome c in ethanol samples when mitochondria were analyzed by BN-PAGE. In summary, this work identifies new targets of 4-HNE modification in mitochondria and provides useful information needed to better understand the molecular mechanisms underpinning chronic ethanol-induced mitochondrial dysfunction and liver injury.


Assuntos
Aldeídos/metabolismo , Etanol/toxicidade , Hepatopatias Alcoólicas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica , Animais , Doença Crônica , Hepatopatias Alcoólicas/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Ratos , Ratos Sprague-Dawley
6.
J Endocrinol ; 222(2): R75-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24928941

RESUMO

In association with sleep-wake and fasting-feeding cycles, organisms experience dramatic oscillations in energetic demands and nutrient supply. It is therefore not surprising that various metabolic parameters, ranging from the activity status of molecular energy sensors to circulating nutrient levels, oscillate in time-of-day-dependent manners. It has become increasingly clear that rhythms in metabolic processes are not simply in response to daily environmental/behavioral influences, but are driven in part by cell autonomous circadian clocks. By synchronizing the cell with its environment, clocks modulate a host of metabolic processes in a temporally appropriate manner. The purpose of this article is to review current understanding of the interplay between circadian clocks and metabolism, in addition to the pathophysiologic consequences of disruption of this molecular mechanism, in terms of cardiometabolic disease development.


Assuntos
Relógios Circadianos/fisiologia , Metabolismo Energético/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilglucosamina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Diabetes Mellitus/fisiopatologia , Heme/metabolismo , Homeostase/fisiologia , Humanos , Luz , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/fisiologia , NAD/metabolismo , Obesidade/fisiopatologia , Proteínas/metabolismo , Sono , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Núcleo Supraquiasmático/fisiologia , Vigília/fisiologia
7.
Am J Physiol Gastrointest Liver Physiol ; 306(4): G265-77, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24356880

RESUMO

Chronic ethanol consumption increases sensitivity of the mitochondrial permeability transition (MPT) pore induction in liver. Ca(2+) promotes MPT pore opening, and genetic ablation of cyclophilin D (CypD) increases the Ca(2+) threshold for the MPT. We used wild-type (WT) and CypD-null (CypD(-/-)) mice fed a control or an ethanol-containing diet to investigate the role of the MPT in ethanol-mediated liver injury. Ca(2+)-mediated induction of the MPT and mitochondrial respiration were measured in isolated liver mitochondria. Steatosis was present in WT and CypD(-/-) mice fed ethanol and accompanied by increased terminal deoxynucleotidyl transferase dUTP-mediated nick-end label-positive nuclei. Autophagy was increased in ethanol-fed WT mice compared with ethanol-fed CypD(-/-) mice, as reflected by an increase in the ratio of microtubule protein 1 light chain 3B II to microtubule protein 1 light chain 3B I. Higher levels of p62 were measured in CypD(-/-) than WT mice. Ethanol decreased mitochondrial respiratory control ratios and select complex activities in WT and CypD(-/-) mice. Ethanol also increased CypD protein in liver of WT mice. Mitochondria from control- and ethanol-fed WT mice were more sensitive to Ca(2+)-mediated MPT pore induction than mitochondria from their CypD(-/-) counterparts. Mitochondria from ethanol-fed CypD(-/-) mice were also more sensitive to Ca(2+)-induced swelling than mitochondria from control-fed CypD(-/-) mice but were less sensitive than mitochondria from ethanol-fed WT mice. In summary, CypD deficiency was associated with impaired autophagy and did not prevent ethanol-mediated steatosis. Furthermore, increased MPT sensitivity was observed in mitochondria from ethanol-fed WT and CypD(-/-) mice. We conclude that chronic ethanol consumption likely lowers the threshold for CypD-regulated and -independent characteristics of the ethanol-mediated MPT pore in liver mitochondria.


Assuntos
Etanol , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Autofagia , Sinalização do Cálcio , Respiração Celular , Peptidil-Prolil Isomerase F , Ciclofilinas/deficiência , Ciclofilinas/genética , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Genótipo , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Hepáticas/patologia , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial , Fenótipo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA