Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 486(2): 558-563, 2017 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-28327359

RESUMO

Lipoprotein lipase (LPL) is a crucial enzyme in lipid metabolism and transport, and its enzymatic deficiency causes metabolic disorders, such as hypertriglyceridemia. LPL has one predicted C-mannosylation site at Trp417. In this study, we demonstrated that LPL is C-mannosylated at Trp417 by mass spectrometry. Furthermore, by using wild-type and a C-mannosylation-defective mutant of LPL-overexpressing cell lines, we revealed that both secretion efficiency and enzymatic activity of C-mannosylation-defective mutant LPL were lower than those of wild-type. These data suggest the importance of C-mannosylation for LPL functions.


Assuntos
Lipase Lipoproteica/metabolismo , Manose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Biblioteca Gênica , Glicosilação , Células Hep G2 , Humanos , Lipase Lipoproteica/genética , Mutação , Proteínas Recombinantes de Fusão/genética
2.
FEBS Open Bio ; 4: 879-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25379385

RESUMO

Extracellular matrix protein 1 (ECM1) is expressed in a wide variety of tissues and plays important roles in extracellular matrix formation. Additionally, ECM1 gene mutations cause lipoid proteinosis (LP), a rare skin condition of genetic origin. However, an effective therapeutic approach of LP is not established. Here, we showed that ECM1 gene mutation observed in LP patients significantly suppresses its secretion. As ECM1 has three putative N-glycosylation sites and most of mutated ECM1 observed in LP patients are defective in these N-glycosylation sites, we investigated the correlation between LP and N-glycosylation of ECM1. We identified that the Asn(354) and Asn(444) residues in ECM1 were N-glycosylated by mass spectrometry analysis. In addition, an N-linked glycan at Asn(354) negatively regulated secretion of ECM1, contrary to LP patient-derived mutants. These results indicate that the defect of N-glycosylation in ECM1 is not involved in the aberration of secretion of LP-derived mutated ECM1.

3.
FEBS Open Bio ; 4: 554-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009769

RESUMO

Hyaluronidase1 (HYAL1) is a hydrolytic enzyme that degrades hyaluronic acid (HA) and has three predicted N-glycosylation sites at Asn(99), Asn(216), and Asn(350). In this report, we show the functional significance of N-glycosylation on HYAL1 functions. Using mass spectrometry, we demonstrated that HYAL1 was N-glycosylated at the three asparagine residues. N-glycosylation of HYAL1 is important for secretion of HYAL1, as demonstrated by site-directed mutation. Moreover, a defect of N-glycosylation attenuated the enzymatic activity of HYAL1. Thus, HYAL1 is N-glycosylated at the three asparagine residues, and its secretion and enzymatic activity are regulated by N-glycosylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA