Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 322, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228586

RESUMO

Toward drastic enhancement of thermoelectric power factor, quantum confinement effect proposed by Hicks and Dresselhaus has intrigued a lot of researchers. There has been much effort to increase power factor using step-like density-of-states in two-dimensional electron gas (2DEG) system. Here, we pay attention to another effect caused by confining electrons spatially along one-dimensional direction: multiplied 2DEG effect, where multiple discrete subbands contribute to electrical conduction, resulting in high Seebeck coefficient. The power factor of multiple 2DEG in GaAs reaches the ultrahigh value of ~100 µWcm-1 K-2 at 300 K. We evaluate the enhancement rate defined as power factor of 2DEG divided by that of three-dimensional bulk. The experimental enhancement rate relative to the theoretical one of conventional 2DEG reaches anomalously high (~4) in multiple 2DEG compared with those in various conventional 2DEG systems (~1). This proposed methodology for power factor enhancement opens the next era of thermoelectric research.

2.
Nano Lett ; 22(15): 6105-6111, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35883274

RESUMO

Organic material-based thermal switch is drawing much attention as one of the key thermal management devices in organic electronic devices. This study aims at tuning the switching temperature (TS) of thermal conductivity by using liquid crystalline block copolymers (BCs) with different order-order transition temperature (Ttr) related to the types of mesogens in the side chain. The BC films with low Ttr of 363 K and high Ttr of 395 K exhibit reversible thermal conductivity switching behaviors at TS of ∼360 K and ∼390 K, respectively. The BC films also exhibit thermal conductivity variation originating from the anisotropy of the internal structures: poly(ethylene oxide) domains and liquid crystals. These results demonstrate that the switching behavior is attributed to an order-order transition between BC films with vertically arranged cylinder domains and the ones with ordered sphere domains. This highlights that BCs become a promising thermal conductivity switching material with tailored TS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA