RESUMO
The current study was to improve and control aceclofenac delivery prepared as biopolymer-based microparticles for effective colon-targeted drug delivery using modified gelatin capsules (MGCs) at different time intervals developed in two batches (C1 and C2). Microparticles were formulated with extracted mucuna gum using liquid paraffin oil (AC.LPO) and soybean oil (AC.SO) and evaluated in vitro for physicochemical performance and in vivo in rats. Encapsulation efficiency ranges from 54.48 ± 0.21% to 82.83 ± 0.22% for AC.LPO and 52.64 ± 0.11% to 80.36 ± 0.22% for AC.SO. SEM showed oblong and irregular shapes with porous and cracked surfaces. DSC showed low enthalpy and a very broad endothermic peak depicting high amorphous property. Delayed drug release was observed in the upper gastrointestinal tract with sustained release depicted in the lower gastrointestinal tract (GIT) using 3 and 9-h batch C1 of MGCs. AC.SO exhibited significantly (p < 0.05) higher anti-inflammatory activity (86%) than AC.LPO (77%). Hence, aceclofenac colon delivery could be improved and controlled using biopolymer-based colon-targeted microparticles delivered with MGCs.
RESUMO
Anacardium occidentale (AO) possesses potent anti-diabetic properties, owing to its high phytochemicals content. This study attempted to maximise the efficacy of AO by encapsulating it in a solid lipid microparticle (SLMs) formulation. Leaves of AO were extracted with water and formulated into SLMs using a lipid matrix composed of P90H and Dika fat. Characterisation of the SLMs include morphology, particle size, pH, encapsulation efficiency percentage, in vitro release and anti-diabetic properties. SLMs were spherical with sizes ranging from 16.7 ± 0.8 µm to 40.12 ± 2.34 µm and had a fairly stable pH over time. Highest drug entrapment was 87%. Batch A2 exhibited an even release of 89%, sustained over time, and a mean percentage reduction in glucose of 25.9% at 12 h after oral administration to study animals. Anacardium occidentale-loaded SLMs exhibited a good hypoglycaemic effect and can be used in the management of diabetes.
Assuntos
Hipoglicemiantes , Lipídeos , Animais , Hipoglicemiantes/uso terapêutico , Lipídeos/química , Tamanho da Partícula , Portadores de Fármacos/químicaRESUMO
Aceclofenac is a non-steroidal anti-inflammatory drug with poor aqueous solubility and a short half-life resulting in low bioavailability. Aceclofenac-loaded solid lipid microparticles based solidified reverse micellar solution (SLMs-SRMS) for oral drug delivery was investigated to improve the bioavailability and control drug release. Hot homogenization method was adopted to prepare the SLMs using a homolipid irvingia fat and Phospholipon® 90H with or without propylene glycol 6000 (PEGylation) in different ratios and characterized in vitro. The in vivo anti-inflammatory activity of the drug was determined on mice inflamed with carrageenan as phlogistic agent. Results showed that the morphology and particle sizes of the SLMs were spherical and smooth and ranged between 5.24 ± 0.01-97.44 ± 0.18 µm. EE % ranged between 67 - 81 %. A significant (p < 0.05) viscosity of 490 mPasec-1 was obtained. FTIR spectra indicated compatibility amongst the constituents. DSC showed a broad peak which depicted an imperfect matrix resulting in a deformation of crystal arrangement creating many spaces for drug entrapment. Delayed drug release was observed in almost all the formulations in SIF (pH, 6.8). Anti-inflammatory activity showed a significant inhibitory effect (p < 0.05, up to 90 %). Hence, the aceclofenac-loaded SLMs-SRMS showed desirable characteristics and could be used for controlled delivery of aceclofenac and thus alternative to conventional aceclofenac oral formulation.
RESUMO
Oral delivery of insulin provides a good alternative because it is non-invasive and patient-friendly. However, multiple challenges affected this route. To overcome barriers for oral delivery of insulin, we aimed to develop a novel insulin-loaded microemulsion system based on snail mucin for oral administration. The strategy in the novel system of using mucin loading insulin into the inner core of prepared water in oil microemulsion to provide sustained released, increased in vivo stability and enhanced drug absorption in the gastrointestinal tract. We report how microemulsion composed of varying ratios of snail mucin and Tween® 80 (1:9-9:1) using oil/water emulsion preparation method influenced insulin performance after oral administration. The results obtained include an encapsulation efficiency of above 70 %; in vitro release was sustained over 10 h and in vivo evaluations in diabetic rat model shows that insulin-loaded microencapsulation effectively reduced blood glucose levels over a period >8 h after oral administration. Therefore, we suggest that the developed formulation for oral insulin can be a promising alternative dosage form for oral protein delivery.