Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(41)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662946

RESUMO

Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first roadmap on magnonics. This is a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives. Today, the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name a few. Hence, despite being a young research field, magnonics has come a long way since its early inception. This roadmap asserts a milestone for future emerging research directions in magnonics, and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.

2.
Nat Commun ; 11(1): 287, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941881

RESUMO

Recent findings of new Higgs modes in unconventional superconductors require a classification and characterization of the modes allowed by nontrivial gap symmetry. Here we develop a theory for a tailored nonequilibrium quantum quench to excite all possible oscillation symmetries of a superconducting condensate. We show that both a finite momentum transfer and quench symmetry allow for an identification of the resulting Higgs oscillations. These serve as a fingerprint for the ground state gap symmetry. We provide a classification scheme of these oscillations and the quench symmetry based on group theory for the underlying lattice point group. For characterization, analytic calculations as well as full scale numeric simulations of the transient optical response resulting from an excitation by a realistic laser pulse are performed. Our classification of Higgs oscillations allows us to distinguish between different symmetries of the superconducting condensate.

3.
Nat Commun ; 7: 11921, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27323887

RESUMO

In equilibrium systems amplitude and phase collective modes are decoupled, as they are mutually orthogonal excitations. The direct detection of these Higgs and Leggett collective modes by linear-response measurements is not possible, because they do not couple directly to the electromagnetic field. In this work, using numerical exact simulations we show for the case of two-gap superconductors, that optical pump-probe experiments excite both Higgs and Leggett modes out of equilibrium. We find that this non-adiabatic excitation process introduces a strong interaction between the collective modes, which is absent in equilibrium. Moreover, we propose a type of pump-probe experiment, which allows to probe and coherently control the Higgs and Leggett modes, and thus the order parameter directly. These findings go beyond two-band superconductors and apply to general collective modes in quantum materials.

4.
Phys Rev Lett ; 115(20): 207202, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26613467

RESUMO

A quantitative description of magnons in long-range ordered quantum antiferromagnets is presented which is consistent from low to high energies. It is illustrated for the generic S=1/2 Heisenberg model on the square lattice. The approach is based on a continuous similarity transformation in momentum space using the scaling dimension as the truncation criterion. Evidence is found for significant magnon-magnon attraction inducing a Higgs resonance. The high-energy roton minimum in the magnon dispersion appears to be induced by strong magnon-Higgs scattering.

5.
Phys Rev Lett ; 105(13): 137207, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230808

RESUMO

We study the magnetic-field-induced quantum phase transition from a gapped quantum phase that has no magnetic long-range order into a gapless phase in the spin-1/2 ladder compound bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). At temperatures below about 1 K, the specific heat in the gapless phase attains an asymptotic linear temperature dependence, characteristic of a Tomonaga-Luttinger liquid. Inelastic neutron scattering and the specific heat measurements in both phases are in good agreement with theoretical calculations, demonstrating that DIMPY is the first model material for an S=1/2 two-leg spin ladder in the strong-leg regime.


Assuntos
Magnetismo , Compostos Organometálicos/química , Compostos de Piridínio/química , Teoria Quântica , Marcadores de Spin , Nêutrons , Transição de Fase , Espalhamento de Radiação
6.
Phys Rev Lett ; 98(2): 027403, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358648

RESUMO

We have performed inelastic neutron scattering on the near ideal spin-ladder compound La4Sr10Cu24O41 as a starting point for investigating doped ladders and their tendency toward superconductivity. A key feature was the separation of one-triplon and two-triplon scattering. Two-triplon scattering is observed quantitatively for the first time and so access is realized to the important strong magnetic quantum fluctuations. The spin gap is found to be 26.4+/-0.3 meV. The data are successfully modeled using the continuous unitary transformation method, and the exchange constants are determined by fitting to be Jleg=186 meV and Jrung=124 meV along the leg and rung, respectively; a substantial cyclic exchange of Jcyc=31 meV is confirmed.

8.
Phys Rev Lett ; 95(9): 097203, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16197245

RESUMO

We report on the magnetic, thermodynamic, and optical properties of the quasi-one-dimensional quantum antiferromagnets TiOCl and TiOBr, which have been discussed as spin-Peierls compounds. The observed deviations from canonical spin-Peierls behavior, e.g., the existence of two distinct phase transitions, have been attributed previously to strong orbital fluctuations. This can be ruled out by our optical data of the orbital excitations. We show that the frustration of the interchain interactions in the bilayer structure gives rise to incommensurate order with a subsequent lock-in transition to a commensurate dimerized state. In this way, a single driving force, the spin-Peierls mechanism, induces two separate transitions.

9.
Phys Rev Lett ; 93(26 Pt 1): 267003, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15698009

RESUMO

Based on a two-dimensional model of coupled two-leg spin ladders, we derive a unified picture of recent neutron scattering data of stripe-ordered La15/8Ba1/8CuO4, namely, of the low-energy magnons around the superstructure satellites and of the triplon excitations at higher energies. The resonance peak at the antiferromagnetic wave vector Q(AF) in the stripe-ordered phase corresponds to a saddle point in the dispersion of the magnetic excitations. Quantitative agreement with the neutron data is obtained for J=130-160 meV and Jcyc/J=0.2-0.25.

10.
Phys Rev Lett ; 90(16): 167201, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12731999

RESUMO

In the two-leg S=1/2 ladders of Sr14Cu24O41, a modulation of the exchange coupling arises from the charge order within the other structural element, the CuO2 chains. In general, breaking transla-tional invariance by modulation causes gaps within the dispersion of elementary excitations. We show that the gap induced by the charge order can drastically change the magnetic Raman spectrum, leading to the sharp peak observed in Sr14Cu24O41. This sharp Raman line gives insight into the charge-order periodicity and hence into the distribution of carriers. The much broader spectrum of La6Ca8Cu24O41 reflects the response of an undoped ladder in the absence of charge order.

11.
Nature ; 418(6898): 614-7, 2002 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12167854

RESUMO

Interacting conduction electrons are usually described within Fermi-liquid theory, which states that, in spite of strong interactions, the low-energy excitations are electron-like quasiparticles with charge and spin. In recent years there has been tremendous interest in conducting systems that are not Fermi liquids, motivated by the observation of highly anomalous metallic states in various materials, most notably the copper oxide superconductors. Non-Fermi-liquid behaviour is generic to one-dimensional interacting electron systems, which are predicted to be Luttinger liquids. One of their key properties is spin-charge separation: instead of quasiparticles, collective excitations of charge (with no spin) and spin (with no charge) are formed, which move independently and at different velocities. However, experimental confirmation of spin-charge separation remains a challenge. Here we report experiments probing the charge and heat current in quasi-one-dimensional conductors--the organic Bechgaard salts. It was found that the charge and spin excitations have distinctly different thermal conductivities, which gives strong evidence for spin-charge separation. The spin excitations have a much larger thermal conductivity than the charge excitations, which indicates that the coupling of the charge excitations to the lattice is important.

12.
Phys Rev Lett ; 87(16): 167204, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11690239

RESUMO

Spectral densities are computed in unprecedented detail for quantum antiferromagnetic spin 1/2 two-leg ladders. These results were obtained due to a major methodical advance achieved by optimally chosen unitary transformations. The approach is based on dressed integer excitations. Considerable weight is found at high energies in the two-particle sector. Precursors of fractional spinon physics occur supporting the conclusion that there is no necessity to resort to fractional excitations in order to describe features at higher energies.

13.
Phys Rev Lett ; 87(12): 127002, 2001 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-11580541

RESUMO

Phonon-assisted two-magnon absorption is studied in the spin- 1/2 two-leg ladders of (Ca,La)(14)Cu(24)O(41) for E parallel c (legs) and E parallel a (rungs). We verify the theoretically predicted existence of two-magnon singlet bound states, which give rise to peaks at approximately equal to 2140 and 2800 cm(-1). The two-magnon continuum is observed at approximately equal to 4000 cm(-1). Two different theoretical approaches (Jordan-Wigner fermions and perturbation theory) describe the data very well for J parallel approximately equal to 1020-1100 cm(-1), J parallel/J perpendicular approximately equal to 1-1.2. At high energies, the magnetic contribution to sigma(omega) is strikingly similar in the ladders and in the undoped high-T(c) cuprates, which emphasizes the importance of strong quantum fluctuations in the latter.

14.
Phys Rev Lett ; 87(4): 047202, 2001 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-11461640

RESUMO

Measurements of the thermal conductivity as a function of temperature and magnetic field in the 2D dimer spin system SrCu2(BO3)(2) are presented. In zero magnetic field the thermal conductivity along and perpendicular to the magnetic planes shows a pronounced double-peak structure as a function of temperature. The low-temperature maximum is drastically suppressed with increasing magnetic field. Our quantitative analysis reveals that the heat current is due to phonons and that the double-peak structure arises from pronounced resonant scattering of phonons by magnetic excitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA