Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 41(3): 37, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29564571

RESUMO

The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA