Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(10): e202400055, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38415970

RESUMO

The removal of hazardous ions from water is crucial for safeguarding both the environment and human health. Soil minerals, integral components of soil, play a vital role as adsorbents for various contaminants, including heavy metal ions, organic dyes, and detergents. This study investigates the interaction between boron ions and soil minerals (gibbsite, kaolinite, and montmorillonite) in the presence of polyethylenimine (PEI). The minerals underwent characterization based on specific surface area, particle size distribution, zeta potential, and the presence of functional groups. The influence of PEI addition on the stability of the soil mineral suspension was evaluated by turbidimetry. Mineral-boron and mineral-boron-PEI interactions were explored under varying conditions, including pH, initial boron concentration, and mineral quantity, with all adsorption experiments conducted over 24 hours. Using the Langmuir isotherm, the maximum adsorption capacity of the studied minerals was determined for boron both without and in the presence of PEI. For gibbsite, kaolinite and montmorillonite, it was 30.63, 24.55 and 26.62 mg g-1, respectively, while in the presence of PEI, it increased to 33.11, 26.61 and 45.47 mg g-1, respectively. The addition of PEI enhanced boron adsorption from aqueous solutions, increasing the removal efficiency from 65 % to about 80 %.

2.
RSC Adv ; 13(39): 27135-27146, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37701283

RESUMO

This study investigated the sorption of Ni(ii) ions from an aqueous solution using novel, synthetic amino-hypophosphite polyampholyte resin (AHP) in a batch adsorption system. The removal of Ni(ii) ions was determined as a function of pH (2.0-8.0), initial concentration of Ni(ii) ions (2.0-20.0 mM), resin dosage (1.0-10.0 g dm-3), contact time (0.04-24 h), and temperature (298-318 K). Moreover, continuous fixed-bed column sorption was also studied using model solutions and actual wastewater from the galvanising plant. The batch sorption experimental data showed that the maximum pH for efficient Ni(ii) ion removal was about 5.0. An equilibrium was reached after about 24 hours. The kinetics results were fitted using pseudo-first-order (PFO), pseudo-second-order (PSO), liquid film (LFD), and intraparticle diffusion (IPD) models. Freundlich and Langmuir isotherm models were applied for sorption equilibrium data. The maximum sorption capacity was obtained from the Langmuir equation to be 2.39, 2.52, and 2.62 mmol g-1 at 298, 308, and 318 K, respectively. The thermodynamic parameters for the sorption of Ni(ii) ions on AHP imply the endothermic and spontaneous character of the process. The experimental results demonstrated that amino-hypophosphite polyampholyte resin could be used to effectively remove Ni(ii) ions from model solutions and real wastewater.

3.
Environ Sci Pollut Res Int ; 30(15): 44553-44565, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36692713

RESUMO

The aim of this research was to determine the adsorption-desorption, surface, electrokinetic, and stability properties of aqueous suspensions of iron-containing minerals in the presence of anionic polyacrylamide (AN PAM) and lead(II) ions. Three minerals found in the soil environment, akaganeite, goethite, and magnetite, were synthesized based on the precipitation method. The interaction mechanism of heavy metal ions with polymer flocculant, which are adsorbed on the soil mineral particles, was proposed. It was shown that the best affinity to the AN PAM or/and Pb(II), adsorbed both from single and mixed solution, shows akageneite (characterized by the highly developed specific surface area). Polymer-metal complexes formed in the mixed adsorbate systems are rather stable, evidence of which is reduced desorption and consequently limited bioavailability of toxic lead ions for organisms and plants in soil environment.


Assuntos
Ferro , Chumbo , Solo , Minerais , Íons , Adsorção , Concentração de Íons de Hidrogênio
4.
J Hazard Mater ; 436: 129047, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533524

RESUMO

The amino-hypophosphite polyampholyte (AHP) obtained from cheap and safe building blocks lacks a typical ion-scavenger matrix derived from crude-oil intermediates like poly(divinylbenzene), which is an advantage to commercial solutions. AHP is characterised by sorption capacity comparable to some ion scavengers available on the market, as it was found that its maximum capacity in the temperature range from 298 K to 328 K varies between 114 and 146 mg Cu(II) g-1 of dry AHP. The possible application of the AHP in the Cu(II) removal process from galvanic effluent was investigated. The results show that it is possible to achieve a good removal rate for model wastewater. The inlet Cu2+ concentrations of model wastewater were 6.4 mg Cu(II) dm-3 and 36,2 mg Cu(II) dm-3, acidic and basic galvanic wastewater respectively. After the removal process concentrations were lowered to 1.3 mg Cu(II) dm-3 and 5.1 mg Cu(II) dm-3, for acidic and basic galvanic wastewater respectively. It was found that the presence of Ca(II) and Na(I) did not significantly influence the Cu(II) removal process. The obtained results indicate that the prepared more environmentally safe ion scavenger can be applicable in a wide range of metal ion removal processes.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Cobre/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais , Poluentes Químicos da Água/análise
5.
Water Res ; 203: 117523, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388492

RESUMO

Pollution by heavy metal ions in aqueous systems gained researchers attention gradually. Toxic metal ions were always present in the environment and the living organisms could get used to specific concentrations of contaminants with given time, however, sudden concentration rise we are observing can make it impossible for the living organisms to adapt. Many ion removal technologies were developed and optimised over the years to cope with this problem, including chemical precipitation, adsorption, membrane filtration and ion-exchange. Adsorption and ion exchange are processes that employ certain materials, that can be collectively named ion scavengers, to remove ions from aqueous solutions. Some of the scavenger materials are still barely studied, in particular polyampholytes - polymeric zwitterionic materials. This review showcases papers published on toxic metal ion removal by polyampholytes, both commercial and experimental, over last two decades. Many recent publications show promising properties of experimental materials that match or even outperform commercial scavengers. This review was prepared to encourage other researchers to investigate this broad and still not well-studied class of materials especially in context of their ion-scavenging properties. Polyamphytes which may be especially worth the attention and further research have been highlighted as literature studies show that the most unexplored materials in the class of polyamphytes are those containing aminomethylphosphonate, aminomethylsulfonate or hypophosphorous acid group.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Íons , Água , Poluentes Químicos da Água/análise
6.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360943

RESUMO

Good sorption properties and simple synthesis route make schwertmannite an increasingly popular adsorbent. In this work, the adsorption properties of synthetic schwertmannite towards Cr(VI) were investigated. This study aimed to compare the properties and sorption performance of adsorbents obtained by two methods: Fe3+ hydrolysis (SCHA) and Fe2+ oxidation (SCHB). To characterise the sorbents before and after Cr(VI) adsorption, specific surface area, particle size distribution, density, and zeta potential were determined. Additionally, optical micrographs, SEM, and FTIR analyses were performed. Adsorption experiments were performed in varying process conditions: pH, adsorbent dosage, contact time, and initial concentration. Adsorption isotherms were fitted by Freundlich, Langmuir, and Temkin models. Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and liquid film diffusion models were used to fit the kinetics data. Linear regression was used to estimate the parameters of isotherm and kinetic models. The maximum adsorption capacity resulting from the fitted Langmuir isotherm is 42.97 and 17.54 mg·g-1 for SCHA and SCHB. Results show that the adsorption kinetics follows the pseudo-second-order kinetic model. Both iron-based adsorbents are suitable for removing Cr(VI) ions from aqueous solutions. Characterisation of the adsorbents after adsorption suggests that Cr(VI) adsorption can be mainly attributed to ion exchange with SO42- groups.


Assuntos
Compostos Férricos/química , Compostos de Ferro/química , Dicromato de Potássio/química , Adsorção , Hidrólise , Oxirredução
7.
Water Air Soil Pollut ; 229(6): 203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937597

RESUMO

Removal of arsenic from water reservoirs is the issue of great concern in many places around the globe. As adsorption is one of the most efficient techniques for treatment of As-containing media, thus the present study concerns application of iron oxides-hydroxides (akaganeite) as adsorbents for removal of this harmful metal from aqueous solution. Two types of akaganeite were tested: synthetic one (A) and the same modified using hexadecyltrimethylammonium bromide (AM). Removal of As was tested in batch studies in function of pH, adsorbent dosage, contact time, and initial arsenic concentration. The adsorption isotherms obey Langmuir mathematical model. Adsorption kinetics complies with pseudo-second-order kinetic model, and the constant rates were defined as 2.07 × 10-3and 0.92 × 10-3 g mg-1 min-1 for the samples (A) and (AM), respectively. The difference was caused by significant decrease in adsorption rate in initial state of the process carried out for the sample AM. The maximum adsorption capacity achieved for (A) and (AM) akaganeite taken from Langmuir isotherm was 148.7 and 170.9 mg g-1, respectively. The results suggest that iron oxides-hydroxides can be used for As removal from aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA