Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Phytochemistry ; 130: 106-18, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27319377

RESUMO

Glucosinolates are plant secondary metabolites with important roles in plant defence against pathogens and pests and are also known for their health benefits. Understanding how environmental factors affect the level and composition of glucosinolates is therefore of importance in the perspective of climate change. In this study we analysed glucosinolates in Arabidopsis thaliana accessions when grown at constant standard (21 °C), moderate (15 °C) and low (9 °C) temperatures during three generations. In most of the tested accessions moderate and pronounced chilling temperatures led to higher levels of glucosinolates, especially aliphatic glucosinolates. Which temperature yielded the highest glucosinolate levels was accession-dependent. Transcriptional profiling revealed also accession-specific gene responses, but only a limited correlation between changes in glucosinolate-related gene expression and glucosinolate levels. Different growth temperatures in one generation did not consistently affect glucosinolate composition in subsequent generations, hence a clear transgenerational effect of temperature on glucosinolates was not observed.


Assuntos
Arabidopsis , Glucosinolatos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mudança Climática , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Glucosinolatos/análise , Glucosinolatos/farmacologia , Folhas de Planta/química , Temperatura
2.
J Agric Food Chem ; 60(42): 10406-14, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23033879

RESUMO

After pollination outdoors, individual bilberry plants from two Northern and two Southern clones were studied for climatic effects on berry yield and quality in a controlled phytotrone experiment at 12 and 18 °C. At each temperature, the following light treatments were tested: (1) 12 h natural light, (2) 24 h natural light, and (3) 24 h natural light plus red light. The first experimental year there was no difference in yield between temperatures; however, the second experimental year the berry yields was significantly higher at 18 °C. Berry ripening was faster in the Northern than in the Southern clones at 12 °C. Northern clones also showed significantly higher contents of total anthocyanins, all measured anthocyanin derivatives, total phenolics, malic acid and sucrose. Metabolic profiling revealed higher levels of flavanols, hydroxycinnamic acids, quinic acid and carbohydrates at 12 °C.


Assuntos
Fotoperíodo , Temperatura , Vaccinium myrtillus/química , Vaccinium myrtillus/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas
3.
Genet Sel Evol ; 43: 20, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21605351

RESUMO

BACKGROUND: Genetically, SNP that are in complete linkage disequilibrium with the causative SNP cannot be distinguished from the causative SNP. The Complete Linkage Disequilibrium (CLD) test presented here tests whether a SNP is in complete LD with the causative mutation or not. The performance of the CLD test is evaluated in 1000 simulated datasets. METHODS: The CLD test consists of two steps i.e. analysis I and analysis II. Analysis I consists of an association analysis of the investigated region. The log-likelihood values from analysis I are next ranked in descending order and in analysis II the CLD test evaluates differences in log-likelihood ratios between the best and second best markers. Under the null-hypothesis distribution, the best SNP is in greater LD with the QTL than the second best, while under the alternative-CLD-hypothesis, the best SNP is alike-in-state with the QTL. To find a significance threshold, the test was also performed on data excluding the causative SNP. The 5th, 10th and 50th highest TCLD value from 1000 replicated analyses were used to control the type-I-error rate of the test at p = 0.005, p = 0.01 and p = 0.05, respectively. RESULTS: In a situation where the QTL explained 48% of the phenotypic variance analysis I detected a QTL in 994 replicates (p = 0.001), where 972 were positioned in the correct QTL position. When the causative SNP was excluded from the analysis, 714 replicates detected evidence of a QTL (p = 0.001). In analysis II, the CLD test confirmed 280 causative SNP from 1000 simulations (p = 0.05), i.e. power was 28%. When the effect of the QTL was reduced by doubling the error variance, the power of the test reduced relatively little to 23%. When sequence data were used, the power of the test reduced to 16%. All SNP that were confirmed by the CLD test were positioned in the correct QTL position. CONCLUSIONS: The CLD test can provide evidence for a causative SNP, but its power may be low in situations with closely linked markers. In such situations, also functional evidence will be needed to definitely conclude whether the SNP is causative or not.


Assuntos
Testes Genéticos/métodos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Mapeamento Cromossômico , Simulação por Computador , Interpretação Estatística de Dados , Estudo de Associação Genômica Ampla , Humanos , Modelos Estatísticos , Mutação
4.
Genet Sel Evol ; 39(3): 285-99, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17433242

RESUMO

Two previously described QTL mapping methods, which combine linkage analysis (LA) and linkage disequilibrium analysis (LD), were compared for their ability to detect and map multiple QTL. The methods were tested on five different simulated data sets in which the exact QTL positions were known. Every simulated data set contained two QTL, but the distances between these QTL were varied from 15 to 150 cM. The results show that the single QTL mapping method (LDLA) gave good results as long as the distance between the QTL was large (>90 cM). When the distance between the QTL was reduced, the single QTL method had problems positioning the two QTL and tended to position only one QTL, i.e. a "ghost" QTL, in between the two real QTL positions. The multi QTL mapping method (MP-LDLA) gave good results for all evaluated distances between the QTL. For the large distances between the QTL (>90 cM) the single QTL method more often positioned the QTL in the correct marker bracket, but considering the broader likelihood peaks of the single point method it could be argued that the multi QTL method was more precise. Since the distances were reduced the multi QTL method was clearly more accurate than the single QTL method. The two methods combine well, and together provide a good tool to position single or multiple QTL in practical situations, where the number of QTL and their positions are unknown.


Assuntos
Ligação Genética , Desequilíbrio de Ligação , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas , Animais , Simulação por Computador , Cruzamentos Genéticos , Feminino , Marcadores Genéticos , Genética Populacional , Masculino , Modelos Genéticos , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA